# COMBINATORIAL FORMULAE FOR GROTHENDIECK-DEMAZURE AND GROTHENDIECK POLYNOMIALS 

COLLEEN ROSS

## 1. Introduction

This report will discuss evidence of the discovery of combinatorial rules for GrothendieckDemazure and Grothendieck polynomials. Section 2 will discuss the case of the GrothendieckDemazure polynomials. Section 3 will discuss the case of the Grothendieck polynomials.

## 2. GROTHENDIECK-DEMAZURE POLYNOMIALS

Suppose $\alpha$ is a composition such that $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathbb{N}^{\infty}$ and only a finite number of the $\alpha_{i}^{\prime}$ s are non-zero. For $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, let

$$
\partial_{i} f=\frac{f-s_{i} f}{x_{i}-x_{i+1}}
$$

where $s_{i}$ acts on $f$ by transposing $x_{i}$ and $x_{i+1}$ and let

$$
\tilde{\pi}_{i}=\partial_{i}\left(x_{i}\left(1-x_{i+1}\right) f\right)
$$

Then the Grothendieck-Demazure polynomial $\kappa_{\alpha}$, which is attributed to A. Lascoux and M. P. Schützenberger, is defined as

$$
\kappa_{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} \ldots
$$

if $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \ldots$, i.e. $\alpha$ is non-increasing, and

$$
\mathrm{K}_{\alpha}=\tilde{\pi}_{i} \mathrm{~K}_{\alpha s_{i}}
$$

if $\alpha_{i}<\alpha_{i+1}$, where $s_{i}$ acts on $\alpha$ by transposing the indices.
Example 2.1. Let $\alpha=(0,2,1)$. Then

$$
\begin{aligned}
\mathrm{K}_{(0,2,1)} & =\tilde{\pi}_{1} \kappa_{\alpha s_{1}} \\
& =\tilde{\pi}_{1}\left(\mathrm{x}_{1}^{2} x_{2}+x_{1}^{2} x_{3}-x_{1}^{2} x_{2} x_{3}\right) \\
& =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}-x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}-2 x_{1}^{2} x_{2} x_{3}+x_{2}^{2} x_{3}-2 x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{2}^{2} x_{3}
\end{aligned}
$$

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ be a composition. Then $D(\alpha)$, which is the key diagram of $\alpha$ described in [ReiShi95], is an array of left-justified boxes, where there are $\alpha_{i}$ boxes in row $i$ in the positions $[i, j]$ for $j=1,2, \ldots, \alpha_{i}$. Note that if $\alpha_{i}=0$, then there are no boxes in row $i$ of $D(\alpha)$.

Example 2.2. Let $\alpha=(1,0,3,1,2)$. Then

$$
\mathrm{D}(\alpha)=\left(\begin{array}{lll}
\square & & \\
\square & \square & \square \\
\square & & \\
\square & \square &
\end{array}\right)
$$

Suppose $\alpha$ is a composition and $\alpha_{i} \neq 0$. Let $[i, j] \in D(\alpha)$ such that $\left[i, j^{\prime}\right] \notin D(\alpha)$ for $j^{\prime}>j$, i.e. the box at $[i, j]$ is the rightmost box in the row. Let

$$
M_{D(\alpha)}(\mathfrak{i}, \mathfrak{j})=\left\{\left[i^{\prime}, j\right] \mid \mathfrak{i}^{\prime}<\mathfrak{i} \text { and }\left[i^{\prime}, j\right] \notin \mathrm{D}(\alpha)\right\}
$$

which is based on $M_{D}(i, j)$ in [Win03]. If $M_{D(\alpha)}(i, j) \neq \emptyset$, then a Kohnert move, which is described in [ReiShi95], consists of moving the box at $[i, j]$ to $\left[i^{\prime}, j\right]$, where $i^{\prime}$ is the greatest row number, i.e. the row closest to row $i$ with an open space. Note that if $\left[i^{\prime}, j\right] \neq[i-1, j]$, then the Kohnert move is considered a tunnel move since the box at $[i, j]$ had to push or move through the boxes in positions $[i-1, j],[i-2, j], \ldots,\left[i^{\prime}-1, j\right]$ (see [Win03]).

Definition 2.3. Given a composition $\alpha$, let $\operatorname{Koh}(\mathrm{D}(\alpha))$ be the set of all diagrams derived from $D(\alpha)$ by Kohnert moves.

Example 2.4. Let $\alpha=(0,2,1)$. Then

$$
\operatorname{Koh}(\mathrm{D}(0,2,1))=\left\{\left(\begin{array}{ll} 
& \square \\
\square & \\
\square &
\end{array}\right),\left(\begin{array}{ll}
\square & \\
\square & \square
\end{array}\right),\left(\begin{array}{ll}
\square & \square \\
\square &
\end{array}\right),\left(\begin{array}{ll}
\square & \square \\
\square & \\
&
\end{array}\right)\right\}
$$

Definition 2.5. Let $\alpha$ be a composition and $[i, j] \in D(\alpha)$ such that $\left[i, j^{\prime}\right] \notin D(\alpha)$ for $\mathfrak{j}^{\prime}>j$, i.e. $[i, j]$ is the rightmost box in row $i$. Suppose $\left[i^{\prime}, j\right]$ is a Kohnert move of $[i, j]$. Then a ghost-Kohnert move consists of moving the box in $[i, j]$ to $\left[i^{\prime}, j\right]$ and leaving a copy or "ghost" of the original box at $[i, j]$, which is not allowed to move, i.e. no Kohnert or ghost-Kohnert moves allowed.

Definition 2.6. Given a composition $\alpha$, let $\operatorname{Ghost} \operatorname{Koh}(\mathrm{D}(\alpha))$ be the set of all diagrams derived from $\mathrm{D}(\alpha)$ by ghost-Kohnert moves.

For notation in a diagram $D$, let $\square$ denote a "ghost" box.
Example 2.7. Let $\alpha=(0,2,1)$. Then
$\operatorname{GhostKoh}(\mathrm{D}(0,2,1))=\left\{\left(\begin{array}{cc} & \square \\ \square & \square \\ \square & \end{array}\right),\left(\begin{array}{ll}\square & \\ \square & \square \\ \square & \end{array}\right),\left(\begin{array}{ll}\square & \square \\ \square & \\ \square & \end{array}\right),\left(\begin{array}{ll}\square & \square \\ \square & \\ \square & \end{array}\right),\left(\begin{array}{ll}\square & \square \\ \square & \square \\ & \square\end{array}\right),\left(\begin{array}{ll}\square & \square \\ \square & \square \\ \square & \end{array}\right)\right\}$
Suppose $\alpha$ is a composition and $D$ is a diagram such that $D=D(\alpha)$ or $D \in \operatorname{Koh}(D(\alpha))$. Then we can associate $x^{D}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots$ to $D$, where $\beta_{i}=\left|D^{[i]}\right|$, i.e. $\beta_{i}$ is the number of boxes in row $i$ of $D$ (see [Win03]).

Definition 2.8. Suppose $\alpha$ is a composition and $D \in \operatorname{GhostKoh}(D(\alpha))$. Then the monomial associated to $D$ is $(-1)^{9} \chi^{D}=(-1)^{9} x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots$, where $g$ is the number of ghosts in $D$ and $\beta_{i}=\left|D^{[i]}\right|$.

Conjecture 2.9. Suppose $\alpha$ is a composition such that $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathbb{N}^{\infty}$ and only a finite number of the $\alpha_{i}$ 's are non-zero. Then

$$
\mathrm{K}_{\alpha}=x^{\mathrm{D}(\alpha)}+\sum_{\mathrm{D} \in \operatorname{Koh}(\mathrm{D}(\alpha))} x^{\mathrm{D}}+\sum_{\mathrm{D} \in \operatorname{GhostKoh}(\mathrm{D}(\alpha))}(-1)^{{ }^{\mathrm{g}} x^{\mathrm{D}}}
$$

where g is the number of ghosts in $\mathrm{D} \in \operatorname{GhostKoh}(\mathrm{D}(\alpha))$.
The above conjecture only deals with distinct diagrams because certain diagrams can be derived from a different combination of Kohnert and/or ghost-Kohnert moves.
Example 2.10. Let $\alpha=(0,2,1)$. From Example 2.1, we know that

$$
\mathrm{K}_{(0,2,1)}=\mathrm{x}_{1}^{2} x_{2}+\mathrm{x}_{1} x_{2}^{2}-x_{1}^{2} x_{2}^{2}+\mathrm{x}_{1}^{2} x_{3}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}-2 x_{1}^{2} x_{2} x_{3}+x_{2}^{2} x_{3}-2 x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{2}^{2} x_{3}
$$

Then $x^{D((0,2,1))}=x_{2}^{2} x_{3}$. From $\operatorname{Koh}(D(0,2,1))$ derived in Example 2.4 and $\operatorname{GhostKoh}(D(0,2,1))$ derived in Example 2.7, we have that

$$
\sum_{D \in \operatorname{Koh}(D(0,2,1))} x^{D}=x_{1} x_{2} x_{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1}^{2} x_{2}
$$

and

$$
\begin{aligned}
\sum_{\mathrm{D} \in \operatorname{Ghost} \operatorname{Koh}(\mathrm{D}(0,2,1))}(-1)^{9} x^{\mathrm{D}} & =-x_{1} x_{2}^{2} x_{3}-x_{1} x_{2}^{2} x_{3}-x_{1}^{2} x_{2} x_{3}-x_{1}^{2} x_{2} x_{3}-x_{1}^{2} x_{2}^{2}+(-1)^{2} x_{1}^{2} x_{2}^{2} x_{3} \\
& =-2 x_{1} x_{2}^{2} x_{3}-2 x_{1}^{2} x_{2} x_{3}-x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{2}^{2} x_{3}
\end{aligned}
$$

Thus, it follows that

$$
\mathrm{K}_{(0,2,1)}=x^{\mathrm{D}((0,2,1))}+\sum_{\mathrm{D} \in \operatorname{Koh}(\mathrm{D}(0,2,1))} x^{\mathrm{D}}+\sum_{\mathrm{D} \in \operatorname{GhostKoh}(\mathrm{D}(0,2,1))}(-1)^{\left.9^{\mathrm{g}} x^{\mathrm{D}}\right)}
$$

We have computationally tested Conjecture 2.9 using our package RulesGroth(Dem).m in Mathematica 7. Given a composition alpha $=\{$ alpha1,.. , alphak $\}$, kappa[alpha] returns the Grothendieck-Demazure polynomial of the composition by using the definition involving divided differences and kapparule[alpha] saves a list diagrams, which contains the diagram of the composition and all diagrams derived from Kohnert and ghostKohnert moves on the composition's diagram, and returns the polynomial that results from associating a monomial to each element in diagrams. Using those functions, we have tested Conjecture 2.9 for a variety of compositions $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, i.e. different values of $k$ and $n$ where $n=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}$, as well as skyline compositions and partitions. This testing has not produced counterexamples.

One conclusion that can be drawn from Conjecture 2.9 is the positivity of terms in $\kappa_{\alpha}$.
Conjecture 2.11. Given a composition $\alpha$ such that $\kappa_{\alpha}$ is defined, let d be the lowest degree of the terms in $\mathrm{k}_{\alpha}$. Then the sign of any term $\chi_{1}^{k_{1}} x_{2}^{k_{2}} \ldots \in \mathrm{~K}_{\alpha}$ is $(-1)^{\left(\mathrm{k}_{1}+\mathrm{k}_{2}+\ldots\right)-\mathrm{d}}$.
Example 2.12. Let $\alpha=(0,2,1)$. Then

$$
\mathrm{K}_{(0,2,1)}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}-x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}-2 x_{1}^{2} x_{2} x_{3}+x_{2}^{2} x_{3}-2 x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{2}^{2} x_{3}
$$

For $\kappa_{(0,2,1)}$, the lowest degree of the terms is $d=3$. The sign of the terms with degree $d$ in $\kappa_{(0,2,1)}$, i.e. $x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{1}^{2} x_{3}, x_{2}^{2} x_{3}$, and $x_{1} x_{2} x_{3}$, is positive, which agrees with $(-1)^{d-d}=1$. The sign of the terms with degree $d+1=4$ in $\kappa_{(0,2,1)}$, i.e. $x_{1}^{2} x_{2}^{2}, x_{1}^{2} x_{2} x_{3}$, and $x_{1} x_{2}^{2} x_{3}$, is
negative, which agrees with $(-1)^{(d+1)-d}=-1$. The sign of the coefficient of the term with degree $d+2=5$, i.e. $x_{1}^{2} x_{2}^{2} x_{3}$, is positive, which agrees with $(-1)^{(d+2)-d}=1$.

## 3. Grothendieck polynomials

Suppose $w \in S_{n}$. Let $X=\left(x_{1}, x_{2}, \ldots\right)$ and $Y=\left(y_{1}, y_{2}, ..\right)$ be sequences of commuting independent variables (see [LasSch82]). If $w=w_{0}$ is the permutation with the maximum number of inversions in $S_{n}$, i.e $w_{0}=n(n-1)(n-2) \ldots 21$, then set the Grothendieck polynomial

$$
\mathfrak{G}_{w_{0}}(X ; Y)=\prod_{i+j \leq n}\left(x_{i}+y_{j}-x_{i} y_{j}\right)
$$

Otherwise, $w \neq w_{0}$ so there exists a transposition $s_{i}=(i, i+1) \in S_{n}$ such that $l\left(w s_{i}\right)=l(w)+1$. Then the Grothendieck polynomial for $w$ is defined as

$$
\mathfrak{G}_{w}=\pi_{\mathfrak{i}}\left(\mathfrak{G}_{w s_{\mathrm{i}}}\right)
$$

where $\pi_{\mathrm{i}}$ is the following divided difference:

$$
\pi_{i}(f)=\frac{\left(1-x_{i+1}\right) f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right)-\left(1-x_{i}\right) f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)}{x_{i}-x_{i+1}}
$$

For this paper, we are considering single Grothendieck polynomials. Thus, for $w \in S_{n}$, we calculate $\mathfrak{G}_{w}(X ; Y)$ and then set $Y=(0,0, \ldots, 0)$, i.e. $y_{i}=0$ for all $i$.
Example 3.1. Let $w=2143 \in S_{4}$. Then $\mathfrak{G}_{2143}=x_{1}^{2}+x_{1} x_{2}-x_{1}^{2} x_{2}+x_{1} x_{3}-x_{1}^{2} x_{3}-x_{1} x_{2} x_{3}+x_{1}^{2} x_{2} x_{3}$.
The diagram of a permutation $w \in S_{n}$, denoted by $\mathrm{D}(w)$, is a finite collection of boxes with vertices in the integer lattice $\mathbb{Z} \times \mathbb{Z}$ (see [Win03]). For $D(w)$, there are boxes in positions $\{[i, j] \mid 1 \leq i, j \leq n\}$ except where cancellation occurs from the "hooks" given by

$$
\left\{\left[w(\mathfrak{j}), \mathfrak{j}^{\prime}\right] \mid \mathfrak{j}^{\prime} \geq \mathfrak{j}\right\} \cup\left\{\left[\mathfrak{i}^{\prime}, \mathfrak{j}\right] \mid \mathfrak{i}^{\prime} \geq w(\mathfrak{j})\right\}
$$

Example 3.2. Let $w=51432 \in S_{5}$. Then

$$
\mathrm{D}(w)=\left(\begin{array}{lll} 
& & \\
\square & & \\
\square & \square & \\
\square & \square & \square \\
\square & &
\end{array}\right)
$$

Let $w \in S_{n}$ and $[i, j] \in D(w)$ such that $\left[i^{\prime}, j\right] \notin D(w)$ for $i^{\prime}>i$ i.e. the box at $[i, j]$ is the highest box in the column. Let

$$
M_{\mathrm{D}(w)}(\mathfrak{i}, \mathfrak{j})=\left\{\left[\mathfrak{i}, \mathfrak{j}^{\prime}\right] \mid \mathfrak{j}^{\prime}<\mathfrak{j} \text { and }\left[\mathfrak{i}, \mathfrak{j}^{\prime}\right] \notin \mathrm{D}(w)\right\}
$$

which Winkel used in [Win03]. If $M_{D(w)}(i, j) \neq \emptyset$, then a Kohnert move consists of moving the box at $[i, j]$ to $\left[i, j^{\prime}\right]$, where $j^{\prime}$ is the greatest column number, i.e. the column closest to column $j$ with an open space. Note that if $\left[i, j^{\prime}\right] \neq[i, j-1]$, then the Kohnert move is considered a tunnel move since the box at $[i, j]$ had to push or move through the boxes in positions $[i, j-1],[i, j-2], \ldots,\left[i, j^{\prime}-1\right]$ (see [Win03]).

Definition 3.3. Given a permutation $w \in S_{n}$, let $\operatorname{Koh}(\mathrm{D}(w))$ be the set of all diagrams derived from $\mathrm{D}(w)$ by Kohnert moves.

Example 3.4. Let $w=2143 \in S_{4}$. Then

$$
\operatorname{Koh}(\mathrm{D}(2143))=\left\{\left(\begin{array}{ll} 
& \square \\
\square &
\end{array}\right),\binom{\square}{\square}\right\}
$$

Definition 3.5. Let $w \in S_{n}$ and $[i, j] \in D(w)$ such that $\left[i^{\prime}, j\right] \notin D(w)$ for $i^{\prime}>i$ i.e. $[i, j]$ is the highest box in column $\mathfrak{j}$. Suppose $\left[i, j^{\prime}\right]$ is a Kohnert move of $[i, j]$. Then a ghostKohnert move consists of moving the box in $[i, j]$ to $\left[i, j^{\prime}\right]$ and leaving a copy or "ghost" of the original box at $[i, j]$, which is not allowed to move, i.e. no Kohnert or ghost-Kohnert moves allowed.

Definition 3.6. Given $w \in S_{n}$, let GhostKoh( $\mathrm{D}(w)$ ) be the set of all diagrams derived from $\mathrm{D}(w)$ by ghost-Kohnert moves.

We still use the same notation $\square$ to denote a "ghost" box.
Example 3.7. Let $w=2143 \in S_{4}$. Then

$$
\operatorname{GhostKoh}(\mathrm{D}(2143))=\left\{\left(\begin{array}{lll} 
& \square & \square \\
\square & &
\end{array}\right),\left(\begin{array}{ll}
\square & \square \\
\square &
\end{array}\right),\left(\begin{array}{ll}
\square & \square \\
\square &
\end{array}\right),\left(\begin{array}{lll}
\square & \square & \square \\
\square & &
\end{array}\right)\right\}
$$

Given $w \in S_{n}$, the association of the monomial $x^{D}=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots$ to a diagram $D$, where $\beta_{j}=\left|D^{[j]}\right|$ is the number of boxes in column $j$ of $D$, is applicable for $D$ such that $D=D(w)$ or $\mathrm{D} \in \operatorname{Koh}(\mathrm{D}(w))$ (see Win[03]).

Definition 3.8. Suppose $w \in S_{n}$ and $D \in \operatorname{Ghost\operatorname {Koh}}(\mathrm{D}(w))$. Then the monomial associated to $D$ is $(-1)^{9} \chi^{D}=(-1)^{g} \chi_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots$, where $g$ is the number of ghosts in $D$ and $\beta_{j}=\left|D^{[j]}\right|$, i.e. $\beta_{j}$ is the number of boxes in column $j$ of $D$.

Conjecture 3.9. Let $w \in S_{n}$. Then the Grothdendieck polynomial $\mathfrak{G}_{w}$ is given by

$$
\mathfrak{G}_{w}=x^{\mathrm{D}(w)}+\sum_{\mathrm{D} \in \operatorname{Koh}(\mathrm{D}(w))} x^{\mathrm{D}}+\sum_{\mathrm{D} \in \operatorname{GhostKoh}(\mathrm{D}(w))}(-1)^{\mathrm{g}} x^{\mathrm{D}}
$$


The above conjecture only deals with distinct diagrams because certain diagrams can be derived from a different combination of Kohnert and/or ghost-Kohnert moves. Note that Conjecture 3.9 gives a generating series for the Grothendieck polynomials.
Example 3.10. Let $w=2143 \in S_{4}$. From Example 3.1, we know that

$$
\mathfrak{G}_{2143}=x_{1}^{2}+x_{1} x_{2}-x_{1}^{2} x_{2}+x_{1} x_{3}-x_{1}^{2} x_{3}-x_{1} x_{2} x_{3}+x_{1}^{2} x_{2} x_{3}
$$

Then $x^{D(2143)}=x_{1} x_{3}$. From $\operatorname{Koh}(D(2143))$ derived in Example 3.4 and GhostKoh(D(2143)) derived in Example 3.7, we have that

$$
\sum_{\mathrm{D} \in \operatorname{Koh}(\mathrm{D}(2143))} x^{\mathrm{D}}=x_{1} x_{2}+x_{1}^{2}
$$

and

$$
\sum_{D \in \operatorname{GhostKoh}(D(2143))}(-1)^{g} x^{D}=-x_{1} x_{2} x_{3}-x_{1}^{2} x_{2}-x_{1}^{2} x_{3}+(-1)^{2} x_{1}^{2} x_{2} x_{3}
$$

Thus, it follows that

$$
\mathfrak{G}_{2143}=x^{\mathrm{D}(2143)}+\sum_{\mathrm{D} \in \operatorname{Koh}(\mathrm{D}(2143))} x^{\mathrm{D}}+\sum_{\mathrm{D} \in \operatorname{GhostKoh}(\mathrm{D}(2143))}(-1)^{\mathrm{g}} x^{\mathrm{D}}
$$

We have computationally tested Conjecture 3.9 using our package RulesGroth(Dem).m in Mathematica 7. Given a permutation $w=\{w 1, \ldots, w k\}$, grothendieck[w] returns the Grothendieck polynomial of the permutation by using the definition involving divided differences and grothrule[w] saves a list diagrams, which contains the diagram of the permutation and all diagrams derived from Kohnert and ghost-Kohnert moves on the permutation's diagram, and returns the polynomial that results from associating a monomial to each element in diagrams. Using those functions, we have tested Conjecture 3.9 for a variety of permutations in $S_{n}$ for different $n$. This testing has not produced counterexamples.

Another conjectured combinatorial rule for the Grothendieck polynomials involves swapped permutations.
Definition 3.11. Let $w \in S_{n}$ and $k=w^{-1}(1)$. Then let $s_{k, i}$ denote the transposition that acts on the indices $k$ and $i$ of $w$.

Example 3.12. Let $w=1432 \in \mathrm{~S}_{4}$. Then $w^{\prime}=w s_{1,4}=2431$.
Given $w \in S_{n}$, the set of the indices of all possible singles swaps in $w$, which is defined by Winkel in [Win03], is

$$
\mathrm{J}^{>\mathrm{k}}(w)=\{\mathfrak{j} \mid \mathrm{k}<\mathfrak{j}, w(\mathrm{k})<w(\mathfrak{j}), \text { and }|\{v \mid \mathrm{k}<v<\mathfrak{j}, w(\mathrm{k})<w(v)<w(\mathfrak{j})\}|=0\}
$$

Definition 3.13. Suppose $w \in S_{n}$. Then a swapped permutation of $w$ is

$$
w^{\prime}=w s_{k, \mathfrak{i}_{1}} s_{k, \mathfrak{i}_{2}} \ldots s_{k, \mathfrak{i}_{m}}
$$

where $i_{j} \in J^{>k}(w)$ such that $i_{1}>i_{2}>\ldots>i_{m}$ and $m \geq 1$.
Example 3.14. Let $w=1432 \in S_{4}$. Then $w^{\prime}=w s_{1,4} s_{1,3} s_{1,2}=4321$.
Definition 3.15. Given $w \in S_{n}$, let $\operatorname{swap}(w)$ denote the set of all swapped permutations of $w$.

Example 3.16. Let $w=1432 \in S_{4}$. Then

$$
\operatorname{swap}(1432)=\{2431,3412,4132,3421,4231,4312,4321\}
$$

Conjecture 3.17. Let $w \in S_{n}$ and $k=w^{-1}(1)$. Then

$$
\mathfrak{G}_{w}=\frac{1}{\chi_{\mathrm{k}}} \sum_{w^{\prime} \in \operatorname{swap}(w)}(-1)^{s} \mathfrak{G}_{w^{\prime}}
$$

where $s$ is the number of swaps.

An important part of the proof needed for Conjecture 3.17 is a bijection between the set

$$
\{\mathrm{D} \mid \mathrm{D}=\mathrm{D}(w), \mathrm{D} \in \operatorname{Koh}(\mathrm{D}(w)), \text { or } \mathrm{D} \in \operatorname{GhostKoh}(\mathrm{D}(w))\}
$$

for $w \in S_{n}$ and the set

$$
\left\{\mathrm{D} \mid w^{\prime} \in \operatorname{swap}(w), \text { and } \mathrm{D}=\mathrm{D}\left(w^{\prime}\right), \mathrm{D} \in \operatorname{Koh}\left(\mathrm{D}\left(w^{\prime}\right)\right), \text { or } \mathrm{D} \in \operatorname{GhostKoh}\left(\mathrm{D}\left(w^{\prime}\right)\right)\right\}
$$

Claim 3.18. Suppose $w \in S_{n}$ such that $w(n) \neq 1$. Let $k=w^{-1}(1)$ and $w^{\prime} \in \operatorname{swap}(w)$. For any diagram D such that $\mathrm{D}=\mathrm{D}\left(w^{\prime}\right), \mathrm{D} \in \operatorname{Koh}\left(\mathrm{D}\left(w^{\prime}\right)\right)$, or $\mathrm{D} \in \operatorname{GhostKoh}\left(\mathrm{D}\left(w^{\prime}\right)\right)$, there is a box at $(1, k)$.

We conclude the paper by examining Grothendieck polynomials in terms of GrothendieckDemazure polynomials.

Conjecture 3.19. A Grothdendieck polynomial can be written as an expansion of GrothendieckDemazure polynomials $\mathrm{K}_{\alpha}$ 's.

Example 3.20. Let $w=325164 \in S_{6}$. Then

$$
\begin{aligned}
\mathfrak{G}_{325164} & =\mathrm{K}_{(2,1,2,0,1)}+\mathrm{K}_{(2,2,2,0,0)}-\mathrm{K}_{(2,2,2,0,1)}+\mathrm{K}_{(3,1,1,0,1)}+\mathrm{K}_{(3,1,2,0,0)}-2 \mathrm{~K}_{(3,1,2,0,1)} \\
& -\mathrm{K}_{(3,2,2,0,0)}+\mathrm{K}_{(3,2,2,0,1)}
\end{aligned}
$$

We have computationally tested Conjecture 3.19 using our package RulesGroth(Dem) .m in Mathematica 7. Given a permutation $\mathrm{w}=\{\mathrm{w} 1, \ldots, \mathrm{wk}\}$, grothendieckexpansion[w] returns the Grothendieck polynomial of the permutation expressed in terms of GrothendieckDemazure polynomials using the following algorithm provided by Alexander Yong:

```
Let A = grothendieck[w] and finalanswer =0
While ( }A\not=0\mathrm{ )
    c
        among the lowest degree terms in A
    A = A - con*kappa[alpha]
    finalanswer = finalanswer + c c **appa[alpha]
end While
Return[finalanswer]
```

Using this function and grothendieck[w], we have tested Conjecture 3.19 for a variety of permutations in $S_{n}$ for different $n$. This testing has not produced counterexamples.

Conjecture 3.21. Consider a Grothendieck polynomial $\mathfrak{G}_{w}$ and its expansion in terms of GrothendieckDemazure polynomials $\kappa_{\alpha}$ 's. Let $|\alpha|=\alpha_{1}+\alpha_{2}+\ldots$ be the weight of a composition. For $a \kappa_{\alpha}$ in the expansion, the sign of the coefficient of $\kappa_{\alpha}$ is $(-1)^{|\alpha|-|\mathrm{D}(w)|}$, where $|\mathrm{D}(w)|$ is the number of boxes in $\mathrm{D}(w)$.

We have computationally tested Conjecture 3.21 using our package RulesGroth (Dem) .m in Mathematica 7 . Given a permutation $w=\{w 1, \ldots, w k\}$, coefficientconj[w] returns True only if the sign of each Grothendieck-Demazure polynomial in the calculated expansion of the Grothendieck polynomial of wfollows the rule in Conjecture 3.21. Using this function, we have tested Conjecture 3.21 for a variety of permutations in $S_{n}$ for different $n$. This testing has not produced counterexamples. Although it seemed like the coefficients of the $\kappa_{\alpha}$ 's were either -1 or 1 , this is not the case based on testing the conjecture for small examples, i.e. there is multiplicity in the expansion as seen in Example 3.20.

## REFERENCES

[LasSch82] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C.R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629-633.
[ReiShi95] V. Reiner and M. Shimozono, Key Polynomials and a Flagged Littlewood-Richardson Rule, J. Combin. Theory Ser. A, 70 (1995), 107-143.
[Win03] R. Winkel, A derivation of Kohnert's algorithm from Monk's rule, Sem. Loth. Comb., B48f (2003).

