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ABSTRACT. Schubert polynomials form a basis of all polynomials and appear in the study
of cohomology rings of flag manifolds. The vanishing problem for Schubert polynomials
asks if a coefficient of a Schubert polynomial is zero. We give a tableau criterion to solve
this problem, from which we deduce the first polynomial time algorithm. These results are
obtained from new characterizations of the Schubitope, a generalization of the permutahe-
dron defined for any subset of the n x n grid. In contrast, we show that computing these
coefficients explicitly is #P-complete.

1. INTRODUCTION

Schubert polynomials form a linear basis of all polynomials Z[x;, z2, z3, .. .]. They were
introduced by A. Lascoux—-M.-P. Schiitzenberger [7] to study the cohomology ring of the
flag manifold. These polynomials represent the Schubert classes under the Borel isomor-
phism. A reference is the textbook [4].

If wo=nn—1---21is the longest length permutation in 5,,, then
G (1, an) =2yt 2w,y
Otherwise, w # wy and there exists ¢ such that w(i) < w(i + 1). Then one sets
Cu(x1, ..., 2) = 0:8ys, (x1, ..., Tp),
where s; is the transposition swapping i and 7 + 1 and

azf — f(-..,$i7$i+1,...)—f(...,l‘i+1,l'i,...).

Ty — Tiy1

Since 0; satisfies
82‘(9]' = 8]81 for |l — j| > 1, and 8181_;,_18% = 8,~+18i82~+1,
the above description of G, is well-defined. In addition, under the inclusion ¢ : S,, —

Sp+1 defined by w(l) - --w(n) — w(l) ---w(n)nt+l, &, = &,). Thus one unambiguously
refers to &, for each w € S, = Un21 S,.

The graph G(w) of a permutation w € S, is the n x n grid, with a e placed in position
(¢, w(i)) (in matrix coordinates). The Rothe diagram of w is given by

D(w) ={(i,j) : 1 <i,j < n,j <w(i)i <w ()}
This is pictorially described with rays that strike out boxes south and east of each e in
G(w). D(w) are the remaining boxes.

The code of w, denoted code(w) is the vector (cy, ca, ..., cr) where ¢; is the number of
boxes in the i-th row of D(w) and L indexes the southmost row with a positive number
of boxes. To each w € S, there is a unique associated code; see [8, Proposition 2.1.2].
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Example 1.1. If w = 53841267 € Sg (in one line notation) then D(w) is depicted by:

[
NN

Here, code(w) = (4,2,5,2).

Consider the monomial expansion

G, = E Cow®.

aGZgO

Now, ¢, = 0 unless o; = 0 for i > L, and moreover, ¢, ., € Z>(. Let Schubert be the prob-
lem of deciding ¢, ., # 0, as measured in the input size of o and w (under the assumption
that arithmetic operations take constant time). The INPUT is code = (cy,...cr) € Z%, with
cr, > 0and « € ZL,. Schubert returns YES if ¢, ,, > 0 and NO otherwise.

Theorem 1.2. Schubert € P.

We prove Theorem using another result. Fix n € Z-, and let D C [n]%.. We call
D a diagram and visualize D as a subset of an n x n grid of boxes, oriented so that
(r,c) € [n]* represents the box in the rth row from the top and the cth column from
the left. Let PerfectTab(D, «v) be the fillings of D with a; many k’s, where entries in each
column are distinct, any entry in row i is < 4, and each box contains exactly one entry.
Let PerfectTab (D, o) C PerfectTab(D, ) be fillings where entries in each column increase
from top to bottom.

Theorem 1.3. ¢, ,, > 0 <= PerfectTab(D(w), ) # ) <= PerfectTab (D (w), ) # ()

In general #PerfectTab(D(w), &) # ca. but rather #PerfectTab(D(w), &) > cq. (cf. [3]).
Example 1.4. Here are the tableaux in | J, PerfectTab (D(31524), c):
1[1] 1[1] 1[1]
- - -

1[1] 1[1] [111]
2] (B 1 B2l BBl

1 I 1

Hence, for instance, c(2 1,1),31524 > 0 but c(4) 31504 = 0.

2



To prove Theorems [1.2)and [1.3| we establish results about the Schubitope introduced in
[9]. This polytope Sp is defined with a halfspace description for any D C [n]%. We prove
(Theorem that a lattice point « is in Sp if and only if PerfectTab(D, ) # () where D
is any diagram.

We then introduce the indicator polytope P(D, ) whose lattice points P(D, a)z are in
bijection with PerfectTab(D, o). We prove that P(D,«) # 0 <= P(D,a)z # 0 (The-
orem [2.27). Thus determining P(D, )z # 0 (and equivalently o € Sp) is in P using
L. Khachiyan'’s ellipsoid method for linear programming, see [12]. We give two proofs
of Theorem The first shows P(D, a) is totally unimodular. Hence P(D, a) # 0 im-
plies P(D, «) has integral vertices. Our second proof obviates total unimodularity and
is potentially adaptable to problems lacking that property. However, only the high-level
structure of the second proof is easily generalizable — the rest is necessarily ad hoc.

For the special case of Rothe diagrams D = D(w), using results of A. Fink-K. Mészéros-
A. St. Dizier [2), Corollary 12 and Theorem 14] conjectured in [9, Conjectures 5.1 and 5.13],

(1) a € Spw) < Caw > 0.
This, combined with our results on the Schubitope, proves Theorems|[I.2]and

The class #P in L. Valiant’s complexity theory of counting problems are those that
count the number of accepting paths of a nondeterministic Turing machine running in
polynomial time. A problem P € #P is complete if for any problem Q € #P there exists a

polynomial-time counting reduction from Q to P. These are the hardest of the problems in
#P. There does not exist a polynomial time algorithm for such problems unless P = NP.

In contrast with Theorem we prove:

Theorem 1.5. Counting c,,, is #P-complete.

Given {cnw € Zso} it is standard to ask for a counting rule for ¢, ,. A complexity
motivation is an appropriate rule that establishes a counting problem is in #P with respect
to given input (length). The rule of [1] establishes that counting ¢, is in #P if the input
is (w, a) but not if the input is (code(w), o). For the latter input assumption, we use the
transition algorithm of [6] and its graphical reformulation from [5]. This allows us to give
a polynomial time counting reduction to the #P-complete problem of counting Kostka
coefficients [10], (see Section ).

2. THE SCHUBITOPE

Consider a diagram D C [n]%. Given S C [n] and a column ¢ € [n], construct a string
denoted word. s(D) by reading column ¢ from top to bottom and recording

o (if(r,c)¢ Dandr e S,
e )if (r,c) e Dandr ¢ S, and
o xif (r,c)e Dandr € S.

(
Let 65,(5) = #{*'s in word, s(D)} + #{paired ()’s in word. s(D)} and

Op(S) =Y 05(5).

Example 2.1. In the diagram D below, we labelled the corresponding strings for word. 5(D)
for S = {1, 3}. For instance, we see words (1 3, (D) = (x).
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The Schubitope Sp, as defined in [9], is the polytope

2) {(al,...,an) €RYy:ay+--+a, =#Dand Zai < 0p(S) forall S C [n]} )
ieS
2.1. Characterizations via tableaux. A tableau of shape D is a map
7:D — [n]U{o},

where 7(r, ¢) = o indicates that the box (r,¢) is unlabelled. Let Tab(D) denote the set of
such tableaux.

It will be useful to reformulate the original definition of 6,(S) into the language of
tableaux. Given S C [n], define 7 s € Tab(D) by
rif (r, ¢) contributes a “x” to word.. s(D),
s if (r,¢) contributes a “)” to word.. ¢(D) which is
(3) WD,S(T7 C) - ( ) . “r ) ’S( )

paired with an “(” from (s, ¢),

o otherwise.

In (3) and throughout, we pair by the standard “inside-out” convention.
Example 2.2. Continuing Example 2.1} below is 7p (1.33(D)

I
N

Proposition 2.3. Forall D C [n)? and S C [n], we have 0p(S) = #WB}S(S).

o[o]wl—

3
o

Proof. 7p s(r,c) € S if and only if (r, ) falls into one of the first two cases in (3). O

Say 7 € Tab(D) is flagged if 7(r,c) < r whenever 7(r,c) # o. It is column-injective if
7(r,c) # 7(r',c) whenever r # r" and 7(r,c) # o. Let FCITab(D) C Tab(D) be the set of
tableaux of shape D which are flagged and column-injective.

Example 2.4. Of the tableaux of shape D below, only the second and fourth are flagged,
and only the third and fourth are column-injective.

i | i | i | i |
2 2 2 °
2 2 2

Proposition 2.5. 7p g € FCITab(D) forall D C [n]* and S C [n].
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Proof. This is immediate from (3). O

A simple consequence of being flagged and column-injective is the following.
Proposition 2.6. Let 7 € FCITab(D). Then for all (r,c) € [n]* and S C [n], we have
4) #{(i,c) e M9 i<} <#{ieS:i<r}
with strict inequality whenever (r,c) € 77(S).
Proof. The map (i,c) — 7(i,c) from {(i,c) € 771(S) : ¢ < r}to{i € S:i < r}is well-
defined since 7 is flagged. It is injective since 7 is column-injective. Thus (4) holds, and
#{(i,c) e H(S) ri<r}<#{(i,c)erH(S)i<r}<#{ieS:i<r}

whenever (r,¢) € 77!(S), establishing the strict inequality assertion. O

In fact, a stronger assertion holds when 7 = 7p g.
Proposition 2.7. If (r,c) € D C [n]? and S C [n], then

(rie) e mpls(S) <= #{(i,c) empls(S) ri<ry<#{ieS:i<r}

Proof. (=) This direction follows from Propositions[2.5/and

(<) Ifr € S, then (r, ¢) contributes a “x” to word. (D), so mp s(r,c) = r € S, as desired.
Thus we assume r ¢ S. The hypothesis combined with this assumption says

#{(z’,c)GWB}S(S):@'<7‘}<#{i€5:i§r}=#{i€5:i<r}.

Thus, there is a maximal s € S with s < r such that 7p 5(1’',¢) # s whenever " < r. If

£“” 7

(s,c) € D, then (s, c) contributes a “x” to word. 5(D), so mp s(s,c) = s, contradicting our
choice of s. Therefore, (s, ¢) contributes an “(” to word. (D). If this “(” is paired by a “)”
contributed by (', ¢) € D with ' < r, then7p ¢(r’, ¢) = s, again a contradiction. Thus, this
“(" pairs the “)” from (r, ¢), so 7p s(r, ¢c) = s € S. Hence, (r,¢) € n'4(S) as desired. O

The previous two propositions combined assert that {(r, ¢) € 754(5)} is characterized
by greedy selection as one moves down each column c. The next proposition shows that
this greedy algorithm maximizes #7!(S) among all 7 € FCITab(D).

Proposition 2.8. Let D C [n|*> and S C [n]. Then #7?5715(5) > #771(S) forall T € FCITab(D).

Proof. If not, then there exist 7 € FCITab(D) and (r, ¢) € [n]? satisfying
#{(i,c) empls(S) i <} < #{(i,e) e77H(S) i <1}
and we can choose these such that r is minimized. Then because r is minimal,
(i) € Tp(S) i < 1} = #{(i,c) € TN(S) i < 1)
and (r,c) € 771(5) \ 7p'5(5), so in particular (r, ¢) € D. Thus Propositionimplies
#{(i,c) € 71‘5715(5) vi<ry=#{(,c) e NS i<r}<#{icS:i<r}
But then we must have (r, ¢) € 7,'¢(S) by Proposition a contradiction. O
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If 7 has shape a subset of [n]* and & = (a, ..., o) € RY, say T exhausts o over S if
D i < #NS).
i€s

Example 2.9. Only the left tableau below exhausts o = (3,2,2,4) over S = {1, 3}.

1 1

4
413 4

o[k]elro

o[k]eol—

4]
2

4 4

Theorem 2.10. Let D C [n]* and o = (ay,...,0p) € Z% with oq + -+ + a, = #D. Then
a € Sp if and only if for each S C [n), there exists Tp g € FCITab(D) which exhausts o over S.

Proof of Theorem [2.10} (=) The inequalities in (2) combined with Proposition[2.3)imply
3" a0 < 0p(S) = #5s(9).
ieS

Thus, 7p ¢ := mp s exhausts a over S.

(<) By Propositions 2.8 and
Y @i < #755(5) < #1pl5(S) = p(S),

i€S

so the inequalities in (2) hold. O
Remark 2.11. The proof of (=) shows that we can take 7p s = mp s in Theorem

It would be nice if 7 s did not depend on S, i.e., if some 7, exhausted o overall S C [n],
so we could take 7p ¢ = 7p in Theorem Indeed, this is shown in Theorem 2.13|

Say 7 € Tab(D) has content « if #7 '({i}) = «; for each i € [n]. Let Tab(D,«a) and
FCITab(D, o) be the subsets of Tab(D) and FClTab(D), respectively, of those tableaux
which have content o. In addition, call a tableau 7 € Tab(D) perfect if 7 € FCITab(D),
and if no boxes are left unlabelled, i.e., 77! ({o}) = (). Thus, the set of perfect tableaux of
content « is precisely PerfectTab(D, o) C FCITab(D, o) introduced in Section 1}

Proposition 2.12. Let D C [n]* and oo = (on, ..., ) € ZZ,. Then PerfectTab(D, o) # 0 if
and only if oy + - - - 4+ a,, = #D and FCITab(D, a) # 0.

Proof. (=) Let 7 € PerfectTab(D, ). Then 7 € FCITab(D, «), and since 7 has content o and
satisfies 77({o}) = 0),

ap+ ot any =#7 {1 + -+ #r({n)}) = #D.
(<) Let 7 € FCITab(D, «). Then since 7 has content «,
#r (o) = #D — #r (1)) — o~ #r () = #D — 1 — -~y =0
Thus, 7 € PerfectTab(D, «). O

Theorem 2.13. Let D C [n]* and o = (ay,...,a,) € Z%. Then a € Sp if and only if
PerfectTab(D, ) # 0.

The proof will require a lemma regarding tableaux of the form 7 = 7p g.
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Lemma 2.14. Let D C [n)?, and S, T C [n] be disjoint. Set
D:D\WB}S(S)and U=SUT.
Then

7T5,1U<U) = WE),IS(S) U WE),IT(T)-

Proof. Let (r,c) € D, and assume by induction on r that
(5) (1,¢) € WB}U(U) <~ (i,c) € 7'('5’15(5) U WB}T(T>
whenever i < r. This clearly holds in the base case r = 1. By Proposition (r,c) €
75w (U) if and only if
(6) #{(i,c)enpy(U)i<r}<#{ieU:i<r}
By (5) and the fact that
() ND=0=5NT,
(6) is equivalent to
#{(i,c) e mplg(S) ri <} +#{(i,c) € Wlf)’lT(T) i<ri<#lieS:i<ri+#{ieT :i<r}

By applying Proposition [2.6] twice, we see that this holds if and only if at least one of (i)
and (ii) below hold.

(i) #{(i,c) e mps(S) i <r}<#{ieS:i<r}

(i) #{(i,c) € WB}T(T) i<ry<#{ieT:i<r}
By Proposition (i) is equivalent to (r,¢) € WB}S(S). If indeed (r,¢c) € WE,}S(S) holds,
then our induction step is complete. Otherwise, (r,c) & 75'(S5), so by definition, (r,¢) €
D. Thus, applying Proposition to D, T C [n] and (r,c) € D, (ii) is equivalent to
(r,¢) € m5.,.(T). Hence, (B) holds for all i < 7. O
Corollary 2.15. Let D C [n]* and S C U C [n]. Then ,'s(S) C npy (U).
Proof. Take T' = U ~. S in Lemma O

Finally, we are ready to prove Theorem [2.13|

Proof of Theorem[2.13] (<) Let 7 € PerfectTab(D, «). Then ay + - - - + v, = #D by Propo-
sition[2.12| Also, for each S C [n],

S = S # ({)) = #751(9),
icS icS
so 7p exhausts a over S. Thus, a € Sp by Theorem

(=) We induct on the sum of the row indices of each box in D, i.e,, >, jcpi- The base

case of an empty diagram is trivial, so we may assume D # (). Then since o € Sp, (2)
implies oy + - - - + a,, = #D > 0, so we can choose m maximal such that «;,,, > 0.

Case 1: (D contains boxes below row m). Pick (r, ¢) € D below row m (so r > m).
Claim 2.16. There exists r < r such that (ry,c) & D.
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Proof of Claim By Theorem there exists 7p j,,) € FCITab(D) such that
(7) #TB}[m]([m])Z&1+...—|—am:a1+...+an:#D‘

Thus, 7p ;) (D) C [m]. Consequently, by column-injectivity of 7p |, there can be at most
m boxes in each column of D. Since (r,c¢) € D with r > m, there are more than m boxes
in column c if (ry,¢) € D for all r; < r. Hence there must be some r, < r for which
(r1,¢) € D, as asserted. O

By Claim we can choose r; < r maximal such that (ry,¢) € D. Let

D = (D~ A(r.0)}) U{(r1,0)}.
Claim 2.17. a € Sj,.

Proof of Claim[2.17} Since o € Sp, (r,¢) € D, and (r1,c) ¢ D, we have
o+ -4 a, =#D =#D.

Let S C [n] and T' = S N [m]. Then define 75 ¢ € Tab(D) by

7 (i, f) = 7TD,T(7”7 c) if(i,5) = (r1,c),
b,5%% mpr(i,j) otherwise.

If 7pr(r,c) = o, then certainly 75 4 € FCITab(D). Otherwise, let s = 7p r(r,c). Since
(r,c) € Dbutr ¢ T, (r,c) contributes a “)” to word,. (D). Thus, by (3), (s, c) contributes
an “(”, so in particular (s,c) ¢ D. From our choice of r;, we must therefore have s < 4,
so 7p 4 is flagged. Hence, 75 ¢ € FCITab(D).

By construction,

#75 ({i}) = #mpr({i})
for each i € [n], so 75 ¢ exhausts a over 7' by Theorem and in particular Remark
Since «; = 0 for all i > m, we can write

Zai = Zai < #TE);(T) < #7’5713(5).
ies i€T

Therefore, 75 ¢ € FCITab(D) exhausts o over S, so a € Sj, by Theoremm O

Sincer; <r,
Yy
(i,j)GD (i,5)€D
Thus, Claimand induction yields 75 € PerfectTab(D, a). Define 7 € Tab(D) by
. Tr(ri,c) if (i,7) = (r,¢),
rolig) = { o) i (0 ) = ()
T5(i,7)  otherwise.
Then it is easy to check that 7, € PerfectTab(D, «), so Case 1 is complete.

Case 2: (D does not contain boxes below row m). We say an inequality >, s a; < 0p(S5)
from (2) is nontrivial if

(8) » a;>0 and  0p(S) < #D.

€S



Case 2a: (All nontrivial inequalities from (2) are strict). Thus if (8) holds, then
) > a; < 0p(S)

i€s
Claim 2.18. There exists ¢ € [n| such that (m,c) € D.

Proof of Claim[2.18, By Theorem there exists some 7p (,y € FCITab(D) which ex-
hausts a over {m}. Then

#TB}{m}({m}) > Q> 0,
SO Tp {m}(r, c) = m for some (r,c) € D. Since 7p () is flagged, we must have » > m. But
by the assumption of Case 2, there are no boxes below row m, so r = m. 0

Pick ¢ € [n] as in Claim Then let D = D~ {(m,c)} and & = (&y,...,a,) =
(o, oy Q1,0 — 1,0,...,0).

Claim 2.19. & € Sj.

Proof of Claim [2.19, Since ov; = 0 for all i > m, and (m, c) € D, we have
(10) a4t ap=a1 4 Fa,—1=#D—1=#D.

For each S C [n], let
Ths = TDs|p € FCITab(D)

be the restriction of 7 g to D. Then by Propos1t1on
(11) #75715(5) > #rp's(S) —1=0p(S) — 1.
If ) .cg i =0, then

Yo =0< #rpL(S).

If 0p(S) = #D, then by and (11),
Y @<ty =#D—1=0p(S) — 1< #75(9).

i€S

Finally, if 3, s a; > 0 and 6p(S) < #D, then (9) must hold, so by (9) and (T1),

@ <) o <0p(S)—1< #7754(5).

€S i€S

In all three cases, 75 ¢ exhausts & over S, so & € Sp by Theorem [2.10] O

By construction,

i< Y il

(i,5)eD (i,5)€D
Thus, Claim and induction yield 75 € PerfectTab(D, &). Define 7 € Tab(D) by
. m if (¢,7) = (m,c),
p(i,J) =19 -/, (J>.( )
7(i,j) otherwise.

Clearly, 7p is flagged, has content «, and satisfies 7, ({o}) = (). The only potential ob-
struction to column-injectivity is that there could be some r # m for which 7 (r,c) = m.
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This is impossible, since 7, is flagged, so such an r must be greater than m, but by the
assumption of Case 2 there are no boxes below row m. Thus, 7p € PerfectTab(D, a), so
Case 2a is complete.

Case 2b: (There exists a tight, nontrivial inequality in (2)). Thus, there exists A C [n]
satisfying
(12) 0<> a;=0p(A) < #D.
i€A
Let DU = 7!, (A) and D® = D ~ DU, Then for each i € [n], set

(1): o ifiEA, d (2): Q; leQA,
% {o ifiga ¢ 0 ifie A

Claim 2.20. o := (", ..., o) € Spu.
Proof of Claim By (12) and Propositionn we have
oy + =Y o =6p(A) = #mply(4) = #DO

€A
Let S C [n]and T"= S N A. Then set

oo, = Tpr|poy € FCITab(DW).

By Corollary .15} 7p,'(T) € D, so 7, ((T) = 7 (T). Thus, by Remark 2.1} 70
exhausts o over 7'. Hence,

ZCV Zaz<#T 1)5 )<#7— 1)5()

€S €T
50 Tpa) ¢ exhausts oM over S, and consequently o) € Sy, by Theoremm O
Claim 2.21. o := (a?), . (2)) € Spo.

Proof of Claim By and Proposition 2.3

icA
Let S C [n], T =S~A and U = AUT. Then by Theorem Remark (12),
Proposition 2.3) and Lemma we can write

Za?) = Zai — Zai < #WB}U(U) —0p(A)

i€s iU icA
= #1pu(U) = #7p.A(A) = #7 ) o(T) < #7125,
Thus, Tpe) 5 := Tpe r exhausts a® over S,s0 a® € Sy by Theoremm O
By and Proposition 2.3} we have
0 < #mpa(A) < #D,
so DU D® ¢ D. Thus, by Claimsnand P.21|and induction, there exist
Tp € PerfectTab(DW o) and 7, € PerfectTab(D® a?).
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Define 7p = mpu) U Tpe) € Tab(D) by
. Tpw (2,7 ifz','eD(l),

(i, J) = Dl )<. j) . ( ‘7) @)

oo (i,7) if (i,7) € D@,

Clearly 7p is flagged and satisfies 7, ({o}) = 0. It has content a because a = o) + o,
and it is column-injective because the images of 7,1) and 7y are disjoint. Therefore,
Tp € PerfectTab(D, ) and Case 2b is complete.

This completes the proof of Theorem 2.13] O

2.2. Polytopal descriptions of perfect tableaux. Given D C [n|?> and @ = (o, ..., ) €
7%, define the indicator polytope

P(D,a) C R

to be the polytope with points of the form (a;);jepm = (11,5 M1y, Qs oo Qg
governed by the inequalities (A)-(C) below.

(A) Column-Injectivity Conditions: For all ¢, j € [n],
0 S Qg S 1.

(B) Content Conditions: For all i € [n],
Z Oéij = .
j=1
(C) Flag Conditions: For all s, j € [n],
> aiy = #{(i,j) € D:i < s},
=1

Proposition 2.22. Let D C [n]* and o = (qu, ..., ) € Z% with ay + -+ + oy, = #D. If
(ayj) € P(D, ), then for each j € [n], we have

Zam #{(i,7) € D :i € [n]}.

Proof. From the flag conditions (C) where s = n, we have that

Z% > #{(i,j) € D :i e [n]}.

If this inequality is strict for any j, then using the content conditions (B), we can write
#D =1+ -- ZZ&Z]—ZZ%]>Z#{ZJ € D:i€ln|} =#D,
i=1 j=1 7j=1 =1

a contradiction. ]

Theorem 2.23. Let D C [n]* and o = (ou, ..., o) € Z2%,. Then PerfectTab(D, o) # 0 if and
onlyif oy + -+, = #D and P(D, o) N Z" # (.
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Proof. (=) By Proposition we have ay + -+ + a,, = #D. Let 7 € PerfectTab(D, o).
Then for each i, j € [n], set

1 if7(r,j) =i for some r € [n],

=#{reln]:7(rj) =i} = {

0 otherwise,

where the second equality follows from the fact that 7 is column-injective.
Claim 2.24. (oy;) € P(D,a) NZ".

Proof of Claim[2.24, Clearly (c;;) € Z™ and the column-injectivity conditions (A) hold.
Since 7 has content «,

>0 = Z #{r € [n]:7(rj) =i} =#r ' ({i}) = o
j=1
for each i € [n], so the content conditions (B) hold. Finally, for each s, j € [n], we have

ZO‘U #{ren]:7(r,j) <s} >#{(r,j) e D:r < s}
since 7 is ﬂagged. Thus, the flag conditions (C) also hold. ]

(<) Let (a;;) € P(D,a)NZ™. By the column-injectivity conditions (A), a;; € {0,1}. Thus,
by Proposition there exists for each j € [n] a bijection

p;:{ien|:(,j)e D} —{icn]:ay;=1}
that is order—preservmg, i.e., p; satisfies p;(i) < ¢;(i") whenever ¢ < i'. Define 7 € Tab(D)
by (i, j) = (1)
Claim 2.25. 7 € PerfectTab(D, ).

Proof of Claim By construction, 77! ({o}) = (. Since y; is injective and order-preserving,
7 is strictly increasing along columns, hence column-injective. For each i € [n], the content
conditions (B) imply

= Z#@]l({i}) = Zaz‘j = a,

so 7 has content «. Finally, the flag conditions (C) show that for each s, j € [n],
#{i <s:(i,j) € D} < Zaij =#{i < sy =1},

so ¢;(i1) < for each (i,j) € D since yp, is order—preservmg Thus, 7(i,j) = ¢;(i) <iand 7
is flagged. Hence, 7 € PerfectTab(D, o). O

This shows that PerfectTab(D, ) # () and completes the proof of the theorem. O

Remark 2.26. The proof of Claim shows that if PerfectTab(D, «) # 0, then we can find
7 € PerfectTab(D, a) which is not only column-injective, but also strictly increasing along
columns, so 7(i,7) < 7(¢,j) whenever i < ¢'. Thus PerfectTab(D, ) # 0 if and only if
PerfectTab(D, ), # 0.
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Theorem formulates the problem of determining if PerfectTab(D,a) # 0 in terms
of feasibility of an integer linear programming problem. In general, integral feasibility
is NP-complete. We now show that in our case, feasibility of the problem is equivalent to
teasibility of its LP-relaxation:

Theorem 2.27. Let D C [n]? and a = (ay,...,a,) € Z™ with ay + -+ + a,, = #D. Then
P(D,a)NZ" # O if and only if P(D, o) # 0.

For reasons given in the Introduction, we provide two proofs of this fact.

Proof 1 of Theorem We write the constraints (A)-(C) in the form M7 < b where M is a
(3n2 4 n) x n? block matrix and b is a vector of length 3n2 + n of the form

Ma,

M = and b = (b;)" ™.

Let b; denote the subvector of b containing those b; with i € I C [3n? + n]. Also, we use
the following coordinatization:

= T
T = (O-/ll:---aanlaal%---vanZw--aann) .

e My, is the n? x n? block corresponding to the condition 0 < «;; from (A). Thus,
My, = —I,2 and b, = 0 for r € [1,n?].

e My, is the n? x n? block corresponding to a;; < 1 from (A). Hence, M4, = I, and
b, = 1forr € [n? + 1,2n?.

e M is the n? x n? matrix for (C). Thus,

Me, 0 ... 0
o[V
0 0 ... Mg
where M¢, = (¢;j)1<ij<n is lower triangular such that ¢;; = —1 for i > j. Also,
b(2n24n)4n(j—1)+s = —#{(i,j) e D:i < s}, fors,j € [n].
e Mpisthe nxn?block encoding (B). Take Mp = (I, I, ... I,)and E[anﬂgngm] =

(a)icpn)- Clearly MpZ < (v)icn) encodes the inequalities Z;‘Zl a;; < a;. Now, (B)
requires 2?21 a;; = ;. However, oy + - - - + v, = #D ensures that

Mg\ . > . S
(Mf*) T < [2n2+41,3n24n] only if MBx = (Oéi)ie[n}'
Summarizing, Mz < b indeed encodes (A)-(C).

Example 2.28. For n = 2 consider ¥ = (a1, a1, aa, g2)” with D = {(1,1),(1,2),(2,2)} C
2] x [2] and @ = (2, 1).

We have
—1 0 0 0 11 0
= 0 —1 0 0 21 0
MaZ=19 0o -1 0] |an|=|o0
0 0 0 —1 929 0



1 000 11 1
. (o1 0 0] |an 1
MaZ=1g 01 0] |an|=|1
00 01 Q99 1
a1
. (101 0)|axn ar) _ (2
MB”“"_(O 10 1) an | S <a2>_(1)
(65D
-1 0 0 0 an —#{(i,1)eD:i<1} -1
Mg =1 -1 0 0 an | _ | -#{@DeDi<2p| | -1
@~ 1o o -1 0 ap | = | =#{G@,2)eD:i<1} | | -1
0 0 —1 =1/ \ag —#{(i,2) e D :i <2} -2

Theorem 2.29. M is a totally unimodular matrix; that is, every minor of M equals 0,1, or —1.

Proof. Suppose M’ is a square submatrix of M with k rows from M4, or My,. We show by
induction on k that det(M’) € {0, £1}.

For the base case k = 0, consider M’ an ¢ x ¢ submatrix of M with only rows from Mp
/

and M¢. Let M}, M/, be the corresponding blocks of M’, i.e. M’ = (%ﬁ) where M}, or

M({., is the submatrix of Mg, or M respectively, using the rows and columns of A/’. Since
Mp has one 1 per column, My has at most one 1 per column. By the form of M, it is

straightforward to row reduce M/, to obtain a (0, —1)-matrix M/, with at most one —1 in
!/

each column. Let M" = %ﬁ), an ¢ x ¢ matrix. It is textbook (see [11, Theorem 13.3])
c

that if a (0, +1)-matrix N has at most one 1 and at most one —1 in each column, N is
totally unimodular; hence det(M’) = +det(M”) € {0,—1,1} as desired. Thus the base
case holds.

Now suppose M’ is a square submatrix of M that contains £ > 1 rows from My, or
My,. Let R be such a row from M4, or My,. If R contains all 0’s, det(M’) = 0, and we are
done. Otherwise R contains a single 1. Hence the cofactor expansion for det(A/’) along
R gives det(M') = £ det(M") where M" is a submatrix of M with k — 1 rows from M4, or
M ,. So by induction, det(M’) € {0,+1}, as required. O

Since M is totally unimodular then any vertices of Mz < b are integral [11, Theo-
rem 13.2]. Thus, if P(D, a) # () then its vertices are integral, i.e., P(D, ) N Z" # (. O
Proof 2 of Theorem Given a point («;;) € P(D, «), we say a pair of sequences

(T’l, vy Tm415C1y - - ,Cm) € [n]erl X [n]m,

for some m € Z,, is stable at («;) if the properties (i)-(iv) below hold. The purpose of
each property will become clear later.

(1) 71 =71
(i) Forall k € [m|, o eps Oy y i € 2
(iii) For all k € [m], if i > ryy1 and oy, & Z, then i = ry.
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(iv) There exists (r,c) € [n]? such that
#{k € m]:(r,c) = (ri,ci)} # #{k € [m] : (r,¢) = (rrya, i)}

Claim 2.30. For any (oy;) € P(D,a) 7", there exists (11, ..., Tmi1;C1, - - ., C) Stableat (au;).

Proof of Claim Choose 71, ¢; such that a,.,., € Z, and assume that we have fixed 74, ¢z
such that o, € Z. By Proposition we have

ZO%’“ = #{(i,) € D :i € [n]} € Z.

Thus, as o, ., & Z, it makes sense to set
(13) Thp1 = max{i # ry : Que, & Z}.

If ry41 = 1 for some ¢ € [k], then end the construction of these sequences. Otherwise, the
content conditions (B) say that

n
E :O‘Tkﬂj =Qpy, € Z,
Jj=1

and since ¢, ¢ Z, we can choose c¢;11 # ¢ such that o, , .., & Z, completing the re-
cursive definition. By the pigeonhole principle, this process must halt, yielding sequences
TlyeoesToyeesTmerand ey, ... ¢y, G With 7,01 = 7.

By disregarding the first ¢ — 1 terms of each sequence, we may assume ¢ = 1 without
loss of generality. Then we assert that (11, ..., 7,415 ¢1,. .., ¢y) is stable at («;;). Indeed, (i)
and (ii) are immediate from the construction, (iii) follows from (13), and (iv) holds because
(r,c) := (rq, c2) exists and satisfies

#{kem]:(r,c)=(ry,cp)} =1 and #{ke[m]:(r,c) = (rgs1,c)} =0,
since ¢y # ¢; and 1 # 1y for all k£ # 2. O

We now fix a pair of sequences (71, ...,7mi1;¢1,- .., Cn). Given (a;;) and § > 0, set
(14)  af = iy +0[#{k € [m] : (i,5) = (rk, &)} — #{k € [m] = (4, 5) = (ris1, ) }).
Claim 2.31. If (ry,...,"m41;C1, - - -, C) 18 stable at (i) € P(D, ), then (af;) € P(D, ) for

some 6 > 0.

Proof of Claim First, note that the content conditions (B) are preserved regardless of
our choice of 0. Indeed, for each i € [n],

n

Za?j = > lay +8[#{k € m] : (i,) = ()} = #{k € [m] = (i.5) = (e, )]

j=1
=a; +0[#{k € [m]:i=n} —#{k € [m] 1 i = rpsa}],
and the term in brackets vanishes by (i).
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We next check the flag conditions (C). For each s, j € [n], we can write

Z% Z aij +0[#{k € [m] : (i,7) = (r,cx)} — #{k € [m] : (4, 7) = (rrs1, i) }]
Zzaij+5[#{k€ [m]:s =2 rpand j = c} — #{k € [m] : s =2 rpp1 and j = ¢ }]

(15) > Zaw O[#{k € [m] : rpy1 < s <rpand j = ¢}

Thus, if #{k € [m]: e < s <rpand j = ¢} = 0, then the flag condition (C) for these
s, j is preserved.
Otherwise, 111 < s < 1 and j = ¢ for some k € [m], so (ii) and (iii) tell us that there is

exactly one i > s for which «;; ¢ Z, namely 7 = 7. This, combined with Proposition [2.22]
shows that

(16) ZO"J ZO‘” Zam #{(i,j) e D:i€n]}— i&ijQZ.

i=s+1 i=s+1

By the nonintegrality from (16), the flag inequalities (C) for («;;) € P(D, ) are strict:

(17) Zoz,»j > #{(i,5) € D :i < s}.

Hence, by taking ¢ sufficiently small and applying and (I7), we can ensure

Zam >Z%J S[#{k € m]:rp <s<rpand j=c}| > #{(i,5) € D :i < s}

for all 5,5 € [n], so the flag conditions (C) will be preserved. If o;; # «; then by we
must have (7, j) = (7, ¢x) or (4, 7) = (rk+1, i) for some k, which by (ii) implies 0 < a;; < 1.
So we can require in addition that § be small enough that 0 < afj < 1foralli,j € [n]. For
such 4, the conditions (A)-(C) all hold, so (a;) € P(D, ). O

Finally, choose a point («;;) € P(D, ) with the maximum number of integer coordi-
nates. If (o) € Z"*, then we are done. Otherwise, there exists (71, Pina13CLy -« s Cim)
that is stable at (a;;) by Claim By (iv), there exists (r,¢) € [n]? such that |ad,| — oo

as § — oo, so a’, violates the column-injectivity conditions (A) for large §. This, com-

bined with Claimm shows that the set S = {6 > 0 : (af;) € P(D, )} is nonempty and
bounded above. Thus, we can define = sup S and set (&;;) = (). Since P(D, ) is
closed and the map § — (af;) from S to P(D, a) is continuous, this supremum is in fact
a maximum, and (&;;) € P(D, «). By our choice of («;;), we cannot have &,,., € Z or
Oy .10, € Zfor any k € [m], since then (&;;) has more integer coordinates than (a;). Thus,
(T1, .-y Tms1;C1, - - ., Cyy) 1S stable at (&;;), so by Claim there exists 6 > 0 for which
(@) € P(D, ). But then (") = (&J;) € P(D, a), contradicting the maximality of . [

In summary, applying the results of this section to D = D(w),
Thm Thm

(18) Cam > 02 0 € SpEL PerfectTab(D, ) # 0L P(D, a)NZ" # @%P(p a) # 0.
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If D C [n]* has many identical columns, then many of the flag conditions (C) will look
essentially the same. Thus, for efficiency of computation, we construct a “compressed”
version of P(D, a) that removes some of the repetitive inequalities.

A tuple C = (m, { P}y, {pr sy, { M }is) is a compression of D C [n)? if:

e m < n is a nonnegative integer such that (r,p) ¢ D whenever »r > m and p € [n],
e P= PU---UP, C [n] such that if p, p’ € P, then

{relnl:(r,p)e D} ={ren]:(rp) e D}

and moreover if D is nonempty in column p then p € P, for some k € [{].
e pi, € Py arepresentative for each & € [(], and
e )\, = #P, foreach k € /.

For D C [n]?, a compression C of D, and & = (@, . . ., Gy,) € ZZ, define
(19) Q(D,C,a) C R™
to be the polytope with points of the form (1. )icm) kejq satisfying (A")-(C”) below.
(A") Column-Injectivity Conditions: For all i € [m], k € [¢],
0<ay;<1.

(B") Content Conditions: For all i € [m],

2

dik = ;.
k
¢,

¢
Ak

—1
(C’) Flag Conditions: For all s € [m], k € [{]

> au > #{(i,px) € D i < s}

=1
Remark 2.32. We can always take m = ¢ = n and P, = {k} for each k € [{], in which case
Q(D,C,a) = P(D,a) CR™,

Theorem 2.33. Let a = (ay,...,ap) € Z% and & = (qu,...,0m) = (Q1,..., ). Then
a1+ +a, =#Dand P(D,«) # Oifandonly if on +- - -+ = #D, Q1 = -+ = v, = 0,
and Q(D,C, a) # 0.

Proof. (=) Let (ov;;) € P(D, a). Then by the content and flag conditions (B) and (C),

#D:a1+---+anZa1+---+am:ZZazj

i=1 j=1

=Y > ;=) #{(i,j) € D:i<m}=#D.
j=1 i=1 j=1
Thus, oy + -+, = #D and a1 = -+ - = o, = 0. Now, for each i € [m] and k € [(], set
5 1
Qi — )\—k Z Oéij.
JEP
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We claim that (&) € Q(D,C, ). First for each i € [m] and k € [¢], we have
0 < g = = Z%_ A1621:1,
]EP JEP

so the column-injectivity conditions (A’) are satisfied. Next, for each i € [m], (B) implies

n
E Ak:a/zk = E E Q5 = § Q45 = A,
Jj=1

k=1 ]EPk

so the content conditions (B’ ) are satisfied. Finally, for each s € [m] and k € [¢], (C) implies

ZO%_ ZZ@Z]_)\Z#{ZJ yeD:i<s}=#{(i,pr) € D:i<s},

JGPk =1 JEP
so the flag conditions (C’) are satisfied.
(<) Clearly oy + - - - + o, = #D. Let (qux) € Q(D,C,&). For each i, j € [n], set
o 0 if i > m,
Y lay ifi<mandj e P

We claim that («;;) € P(D, ). The column-injectivity conditions (A) are clear. If i > m,

n
E Q5 = 0= (678
Jj=1

Otherwise i < m, and (B’) implies

n
E Qi = E E azk — E Akazkz = ;.
=1

k=1 jePy
Thus, the content conditions (B) hold. Finally, if s € [n] and j € By, then (C’) implies

min{s,m}

Zaij = Z Qi > #{(i,pr) € D i <min{s,m}} = #{(i,j) € D : i < s}.
i=1 i=1
Hence, the flag conditions (C) hold as well. U

2.3. Deciding membership in the Schubitope. We use the above results of this section
to give a polynomial time algorithm to check if a lattice point is in the Schubitope.

Let D C [n]? and fix a compression C = (m, { P }i_,, {pe}oets { M }ooy) Of D (as in Sec-
tion 2.2).

Theorem 2.34. Let a = (o, ..., o) € Z2,. Then o € Sp if and only if oy + - - - + au, = #D,
U1 ==, =0,and Q(D,C,&) # (), where & = (G, ..., 0y) = (a1,...,Qn).

Proof. This follows from Theorems[2.13} [2.23} [2.27| and O

Foreach k € [, let R,(C) = {r € [n] : (r,px) € D} C [m].

Theorem 2.35. Given as input {Ry.(C)}._,, {Ak}k pand & = (Q, ..., Q) € ZZ, satisfying
Qy+- -+, = #D, one can decide if a := (qu, ..., Gm, 0,...,0) € ZL, lies in Sp in polynomial
time in m and /.
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Remark 2.36. In view of Theorem this input is most natural, because the conditions
ay + -+ = #D and oy = -+ = a, = 0 are clearly necessary, and it contains the
minimum amount of information we need to compute Q(D,C, &).

Remark 2.37. As in Remark we can take m = ¢ = n and P, = {k} for each k € [(], so
we can check if « is in Sp in polynomial time in n regardless of the structure of D.

Proof of Theorem Since Ry(C) takes m bits to encode for each k € [¢], and Q(D,C, &) C
R™ is governed by O(m/) constraints, Q(D,C, &) can be constructed in polynomial time
in m and /. By Theorem we are done using L. Khachiyan’s ellipsoid method [12]. O

3. COMPUTING ROTHE DIAGRAMS

We will repeatedly use the following to establish the complexity of computing prelim-
inary data of D(w) given code(w).

Proposition 3.1. There exists an O(L?)-time algorithm to compute (w(1),...,w(L)) from the
input code(w) = (cq,...,cp).

Proof. Clearly w(1) = ¢; + 1. After determining w(1),...,w(i — 1), we determine (in O(L)-
time) 7 := 7Y € S;_; such that (w(7 (1)) < w(n(2)) < ... < w(w(i —1))). Next, set

B := (w(n(1)), w(n(2)) — w(w(1)), w(r(3)) —W(W(Q)) swm(i = 1)) —w(n(i - 2)))).

Let
t

Vii=Y (Bj—1), for0<t<i—1.
j=1
Setw(i) := ¢;+T+1where T := maxcjo;—1{t : ¢; > V;}. By construction, w(1), ..., w(i)is
a partial permutation with code (¢, ..., ¢;—1,¢;). Each stage 1 <i < L takes O(i)-time. [

The essential set of w consists of the maximally southeast boxes of each connected com-
ponent of D(w), i.e

(20) Ess(w) = {(i,j) € D(w) : (i+1,7), (4,5 + 1) & D(w)}.

If it exists, we call the connected component of D(w) involving (1, 1) the dominant compo-
nent and denote it by Dom(w). For instance, in Example Dom(w) has shape (4, 2,2,2).
Further, if it exists, the accessible box z,, is the southmost then eastmost box in Ess(w) ~\

Dom(w). In Example[1.1}
Ess(w) = {(1,4),(3,4),(3,7),(4,2)} and z,, = (3,7).

(Although (4, 2) is the southmost box of Ess(w), it is in Dom(w), and hence not the acces-
sible.)

We will need the following in Section

Proposition 3.2. Given code(w), there exists an O(L?)-time algorithm to compute z,, = (r, c) or
determine it does not exist.

Proof. Use PropositionB.1]to find (w(1),...,w(L)) in O(L?)-time. Next, compute

wyw (1) == {w(j) : w(j) < w(i), j <i}.
Then take
Y(i)={¢—1: g€ wyw(@)}~wyw(i), forie [L].
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Compute k; := max Y (i) for i € [L] in O(L?)-time (if k; > 1, then k; is the column index
of the eastmost box of D(w) in row 7). In O(L?)-time, calculate

I={iel2,....,L] : k;> m<1nw(j)}
7<i
LetY := {(i,k;) : i € I}. Hence, Y N Dom(w) = ). Thus, if Y = 0, z,, does not exist.

Otherwise, z,, € Y. Thus, in O(L)-time, determine r := max{i : (i,k;) € Y}. Output
Zy = (1, k). O

The pivots of z, denoted Piv(z,) are the o’s of D(w) that are maximally southeast,
among those northwest of z,,. In Example[1.1] Piv((3,7)) = {(2,3), (1,5)}.

4. PROOFS OF THEOREMS[1.2] AND

4.1. Proof of Theorem By (I) combined with Theorem it remains to establish
the complexity of computing a compression of D(w). For this, we need the following
lemmas and propositions. Fix w € S, with code(w) = (¢4, ..., cr). Let o € S, be such that
{w(e(1)) < w(o(2)) < ... <w(o(L))}. For convenience, set w(c(0)) := 0.

Lemma 4.1. For 1 < h < L, and for all
j17j2 € {w(a(h - 1)) + 1,11)(0'(]7, - 1)) + 27 cee ”(U(O'(h)) - 1}7
we have (i, j1) € D(w) if and only if (i, j2) € D(w).

Proof. For each k, let ugk) <...< u,(f) be w(1),w(2),...,w(k) sorted in increasing order.
Set uék) := 0. The lemma follows from the inductive claim that in the first k£ rows of D(w),

the columns ugk_)l +1, ugk_)l +2,... ,uﬁlk) — 1 are the same. The base case k = 1 is clear. The

inductive step is straightforward by considering how, in row k£ + 1 of D(w), the @ and its
ray emanating east affects the columns. O

Define a collection of intervals in [n| by
Py 1 :=[w(o(k—1))+ 1, w(o(k)) — 1] and Py, :={w(o(k))}, for1 <k < L.

Let1 < h; < hy < ... < hy < 2L be indices of the intervals P}, that are nonempty. Set
P, =P .

Lemma 4.2. If ji, jo € Py for some k, then (i, j,) € D(w) <= (i,72) € D(w).
Proof. This follows by the definition of { P, }:_, together with Lemma O
Let pi, := min{p € P} for each k € [/].

Proposition 4.3. There exists an O(L?)-time algorithm to compute { Py }i_,, {pr Yo, and {# P }5_,
from the input code(w) = (c1, ..., cr).

Proof. Proposition B.1|computes (w(1),...,w(L)) in O(L?)-time. It takes O(L log(L))-time
to sort (w(1),...,w(L)), i.e., to compute ¢ € S;. Computing the endpoints, and thus
cardinalities, of the P] takes O(L)-time as there are at most 2L of them. Then we reindex
{#P/}2L | to obtain {# P, }:_, in O(L)-time. O

For each k € [/], let
Ry :={rel[L]: (r,px) € D(w)}.
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Proposition 4.4. Computing { Ry }._, from code(w) takes O(L?)-time.

Proof. By D(w)’s definition, r € Ry if and only if w(r) > p, and pp & {w(i) : i < r}.
Propositions[.3|and 3.1|give { .}, {pr}i_; and {w(1),...,w(L)} in O(L?)-time. O

Conclusion of proof of Theorem[1.2} Propositiond.3computes { P, }¢_;, {p}5_,, and {#P.}5_,
in O(L?)-time. Proposition[t.4]finds { R}, }{_, in O(L?)-time. One checks, using Lemma[4.2}
that C = (L, {Pu oy, {pr}ocys {#P:}i_,) is a compression of D(w). Hence we may apply
Theorem [2.35 by taking D := D(w), Rx(C) := Ry, A, := #P, for k € [(] and m := L. Thus
the result follows by (). O

4.2. Proof of Theorem an application. Remark combined with proves the
theorem. O

Let n132(w) be the number of 132-patterns in w € S, that s,

Corollary 4.5. There are at least ny33(w) + 1 distinct vectors o such that ¢, ,, > 0.

Proof. Suppose i < j < k index a 132 pattern in w. There is a box b of D(w) in row j
and column w(k). There are N := n;33(w) many such boxes, by, ..., by (all distinct), listed
in English language reading order. Let M; be boxes in the same column and connected
component as b; that are weakly north of b; and strictly south of any b;, where j < i.
Iteratively define fillings Fy, £y, F5, ..., Fy of D(w):

(Fy) Fill each box c of D(w) with the row number of c.
(F;) For 1 <i < N, F; is the same as F;_; except that F(c) := F;_;(c) — lif c € M,.

Clearly, Fyy € PerfectTab (D (w)) := |, PerfectTab (D (w), ). Inductively assume F;_; €
PerfectTab (D (w)). Since labels only decrease, F; satisfies the row bound condition. Next
we check that each column is strictly increasing. Let m; be the northmost box of M;. If m;
is adjacent and directly below some b; (for a j < i) then

Fi(bj) = Fo(bj) — 1 < Fo(m;) — 1 = F;(my),
as needed. Otherwise suppose m; is adjacent and south of a non-diagram position. Let d;
(if it exists) be the first diagram box directly north of m;. Then Fj(d;) < Fy(m;) — 1. Hence
Fi(di) < Fo(di) < Fo(m;) — 1 = F;(my),
verifying column increasingness here as well. That F; is column increasing elsewhere is
clear since F;_; is column increasing (by induction) and only labels of M/, are changed.

It remains to check that every label of F; is in Z-,. Since each box of D(w) is decre-
mented at most once, the only concern is there is a box x in the first row that appears
in some M;, since then Fj(x) = 1 and Fj(x) = 0. However, in this case b; must be in
Dom(w), which implies that the “1” in the 132-pattern associated to b; could not exist, a
contradiction. Thus F; € PerfectTab(D(w)), completing the induction.

Finally, under Theorem 1.3} each F; corresponds to a distinct exponent vector since the
sum of the labels is strictly decreasing at each step F;_; — F;. O

From Corollary 4.5 this result of A. Weigandt [15] is immediate:
Corollary 4.6 (A. Weigandt’s 132-bound). &,,(1,1,1,...,1) > ny3(w) + 1.
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As shown in [15], Corollary §.6|in turn implies &,,(1,1,...,1) > 3 if nizp(w) > 2, a
recent conjecture of R. P. Stanley [13].

5. COUNTING ¢4 IS IN #P

5.1. Vexillary permutations. A permutation w € S, is vexillary if there does not exist
a 2143 pattern, i.e., indices i < j < k < [ such that w has the pattern w(j) < w(i) <
w(l) < w(k). For example, w = 53841267 is not vexillary; we underlined the positions of
a 2143 pattern. Fulton’s criterion states that w is vexillary if and only if there do not exist
(a,b), (c,d) € Ess(w) such that @ < cand b < d. In Example w is not vexillary due to
(1,4) and (3, 7). Our main reference for this subsection is [, Chapter 2].

We will also use this characterization of vexillary permutations:
Theorem 5.1. [6] Given code(w) = (cy, ..., cr) € Z%, w vexillary if and only if

(i) if i is such that ¢; > c;41, then ¢; > c; for any j > i, and
(ii) if i, h are such that ¢; > ¢y, then #{j : i <j < h, ¢; < cp} < ¢ — cp.

The shape of a vexillary permutation v is the partition \(v) formed by sorting code(v) =
(¢1,c2,...) into decreasing order. Now, if ¢; # 0, let e; be the greatest integer j > i such
that ¢; > ¢;. The flag

O(v) = (91 < P2 < ... < )

for v is the sequence of e;’s sorted into increasing order; see, e.g., [8, Definition 2.2.9].
Example 5.2. Consider code(v) = (5,1, 3,1, 2) for the vexillary v = 6253714. Here
e=(1,5,3,5,5),6(v) = (1,3,5,5,5) and A(v) = (5,3,2,1,1).

‘ ‘ ‘ ‘ <1 11111111
— <3 2 3
L =5 s
] D — < 4
- <5 5
I
D(v) A(v) flagged by ¢(v) T € SSYT(A(v), ¢(v))

For a partition A = (A\; > XAy > ... > A\, > 0)and aflag ¢ = (¢1 < ¢ < ... < ¢,) Of
positive integers, define the flagged Schur function

Sx(¢) = det |hx,—iti (i) lij=1,..m)
where

hi(n) = Z Liy ©** Liy,

1< <..<ig<n

is the complete homogeneous symmetric polynomial of degree k. Furthermore,
(21) S, = Sxw)(é(v)), for v vexillary.
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A semistandard Young tableau of shape A is flagged by ¢ if its entries in row i are < ¢;;
see Example[5.2] Denote the set of such tableaux by SSYT (), ¢). Then

(22) S)\(¢) _ Z xcontent(T)‘
TESSYT(\0)
where content(T") = (p1, - - ., te(n)) such that y; is the number of i’s in T'.

5.2. Graphical transition. The transition recurrence for &,, was found by A. Lascoux and
M.-P. Schiitzenberger [6]. This is transition for the case discussed in [5]:

Theorem 5.3 ([6], cf. [5]). Let z, = (r,c) and w' = w - (r k) where k = w'(c). Then
(23) Sy =2,6 + Z S

w=w'-(i k)

where the summation is over {i : (i, w(i)) € Piv(z,)}.

We will use the graphical transition tree 7 (w) of [5]. This reformulates in terms of
Rothe diagrams and certain moves on these diagrams. By definition, D(w) (equivalently
w) will label the root of 7 (w). If w is vexillary, stop. Otherwise, there exists an accessible
box z,, = (r,¢) € D(w) (if not, D(w) = Dom(w), contradicting w is not vexillary).

The children of D(w) are Rothe diagrams resulting from two types of moves:

(T.1) Deletion moves: remove z,, from D(w). The resulting diagram is D(w’). Add an
edge D(w) =~ D(w').

(T.2) March moves: There is a move for each x) = (i,w(i)) € Piv(z,). Let R be the
rectangle with corners z,, and xV. Remove x¥ and its rays from G(w) to form
G (w). Order the boxes {b;}’_, in R in English reading order. Move b strictly
north and strictly west to the closest position not occupied by other boxes of D(w)
or rays from G(w). Repeat with by, b, ... where b; may move into a square left
unoccupied by earlier moves. The resulting diagram will be D(w”) where w" =
w' - (i k). Add an edge D(w) — D(w").

Repeat for each child D(u). Stop when u vexillary; these permutations are the leaves
L(w) of T (w). (Multiple leaves may be labelled by the same permutation.)

Example 5.4. Let w = 53841267. We compute the march move 2 for the pivot (2, 3):

|| ||

[]

HIINEES L LIz 1
NN e
! ! T
w = 53841267 remove hook at (2, 3) w” = 57341268

The moved boxes during D(w) — D(w") are shaded gray.
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Example 5.5. Let w = 53861247. Using T (w) from Figure 1| we compute

2
Guw = 74 - Gr3541268 + T4 - Opr3a1268 + T34 - Gsa6a1278 + T3y - Ogssa1278 + T3T4 - Gr6341278

+ Grus31268 + Gs7431268 + 1’32) - Gsup31278 + T3 - Geaszi1278 + T3 - Ospa31278-
For instance, c¢(1253).0 1= [21232523]6,, = 1 is witnessed by
e the path w =% o =% ¢ ™5 4 = 53641278, and
e the semistandard tableau

1[1]1]1]
21213
33
414

Proposition below formalizes a rule for ¢, ,, in terms of such pairs.

T —

of shape \(u), flagged by ¢(u) = (1, 3,4, 4).

[[]
/ \
ffHDEF [Tz 1]
[0 i
e RElfee IGEERkE Hilan I
e IR
"\ N\
i = B i i
= I

FIGURE 1. T (w) for w = 53861247 where the accessible boxes are marked
with z and those boxes of the parent which moved are shaded gray.
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5.3. Proof of #P-ness. The technical core of our proof of Theorem 1.5]is to show:

Theorem 5.6. The problem of computing cq ., given input o and code(w), is in #P.

Define X to be the set consisting of pairs (.5, R) where:

X1) S =(s1,...,8n), st € [L]U{(zg,ms) : k € [L],m; € Zso} such that if s; = (x, my)
then s;.1 # (zg, M) fort < h, and
(XZ) R = (rij)lﬁi,jSLl where Tij € ZZO'
Fix w € S« and a vexillary permutation v € S.. A (w, v)-transition string is a sequence
S = (si,...,sy) satisfying (X.1) such that if we interpret i as ¢ — e and (74, m;) as

o " o...0 ™ o (m-times) then S describes a path from w to (a leaf labelled by) v in
T (w). Let Trans(w, v) be the set of such sequences.

The deletion weight of S € Trans(w, v) is

delwt(S) = th - €y,
where the summation is over 1 < ¢ < h such that s, = (x,,m;) € S for some r € [L]
(depending on t). Here ¢, € Z%, is the r-th standard basis vector and L is the length of
code(w) = (¢q,ca,...,cp).
Example 5.7. In Figure[I| we read the (w = 53861247,v = 54631278)-transition string S =
(2, (z3,2)) as the path w — e - @ 2% 1. Here, delwt(S) = (0,0,2,0).

Suppose T is a tableau of shape A = (A\; > Xy > ... > A\ > 0), with entries in [L] and
weakly increasing along rows. Define
R(T) = (rijhr<i<t
to be the L x L matrix where r;; is the number of j’s in row i of 7. R(T) encodes T'. As

pointed out in (a preprint version of) [10], 7" might have exponentially many (in L) boxes,
whereas R(T') is a O(L?) description of T

Example 5.8. If A = (4,3,1,0,0) and

21100
1/1]2]3] 01011
T=[2l4]5] «—=RT)=]000 10
4 00000
o 00000

Let X, ., = {(S,R(T))} € X such that the following hold:

(X.1) S € Trans(w,v),
(X.2") T € SSYT(A(v), ¢(v)), and
(X.3") delwt(S) + content(T) = .

Proposition 5.9. c, ., = # X .

Proof. Iterating (23),

S, = Z Z SCdeth(S)Gv.

vexillary v€So S€Trans(w,v)
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Hence

(24) Comw = Z Z [xa]xdelwt(S) 61} )

vexillary v€Soo S€Trans(w,v)

The result then follows from by (21), (22), and (24) combined. O

Proposition 5.10 (cf. [6]). Let code(w) = (cy,...,cL). Suppose D(w') is obtained from D(w)
using move (T.1) and D(w") is obtained from D(w) with move (T.2) for a pivot in row i. There is
an O(L?)-time algorithm to compute

(D) code(w’) = (¢1,...y¢r1,¢0 — 1, Cogry ...y cp) and
(II) code(w”) = (C17 ce ey Gie1,C + b, Citly-+-,Cr_1,Cpr — b, Craly .- ,CL),fOT some b € Z>0.

Proof. By Proposition 3.2} determine z,, := (r, ¢) in O(L?)-time.
For (I), D(w') is obtained from D(w) by deleting z,,; so the expression in (I) is clear.

For (II), using Proposition .1, we can find x = (i, w()), in O(L?)-time; this is our (T.2)
pivot. Notice that row r of D(w) N R is nonempty (it contains z,, = (r,c)); let b be the
number of boxes in this row. It is straightforward from the graphical description of R in
terms of Rothe diagrams that each row of D(w) N R either has zero boxes or b > 0 boxes.
Moreover, the d-th box (say, from the left) of each row are in the same column.

Suppose ji,...,Jm € [i + 1,7] index the rows where D(w) N R # () (and thus has b
boxes). (T.2) moves the b boxes of j; to row i and moves the b boxes of j, to row j,_; for
q=2,...,m. As explained above j,, = r, so (T.2) moves no boxes into row r. Thus row r
of D(w"”) NR has zero boxes.

It remains to compute b in O(L?)-time. Using Proposition[3.1]compute, in O(L?)-time,
m:=#{h<r : wh)<w()}.
Clearly b = ¢, — [(w(i) — 1) —m]. O

Let s, = (x,,m,), as in (X.1), be a valid (multi)-deletion move on u € T (w). Let uf™ ¢
T (w) be defined by u 5 e - - - @ &5 ™) (m,-times).
Proposition 5.11. Suppose u € T (w) where code(u) = (¢1, ..., cr). Let s, = (zg,my) or s =i
be as in (X.1). Given input code(u) and s,, there is an O(L?) algorithm to respectively determine
ifu 2 - 0 5% M) (my-times) or u —— " occurs in T (w) and (if yes) to compute

e code(u™) in the case s; = (xy, m;) (a multi-deletion move (T.1)), or
e code(u") in the case s; = i (a march move (T.2)).

Proof. By Proposition L' < L. Thus in our run-time analysis, we replace L’ by L.

Proposition 3.2| finds z, := (r,¢) (or determines it does not exist) in O(L?)-time. If z,
does not exist then « is dominant and thus vexillary; output s, is invalid. Thus we assume
henceforth that z,, exists.

Case 1: (s; = (wy,my).) Proposition B.1]finds u(1),...,u(L) in O(L?)-time. Determine
(taking O(L?) time) if

(25) Cr — ((HEI%I]IU( )) — 1) > my,
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holds. We claim that s, is valid if and only if holds and k = r. Indeed, observe
(26) #{boxes in row r of Dom(u)} = <m%r]1u(z)> —1.
elr

Thus, is equivalent to the existence of m; boxes in row r of D(u) \ Dom(u). By (T.1),
if k = r this is equivalent to being able to apply ® —+ e successively m;,-times.

Finally, if s, is valid, by m, applications of Proposition @D,
(27) code(ul™) = (&1, ..., G 1,C — My, Crp1, ... CL1 ).
Hence we can output (27) in O(L?)-time.
Case 2: (s; = i.) By Proposition 3.1} determine u(1),...,u(L’) from code(u) in O(L?)-time.
In particular this computes x := (i,u(7)) in O(L?)-time. To decide if s, is valid we must
determine if x € Piv(z,). To do this, first calculate (in O(L)-time)

unw (zu) = {(j,u(f)) = J <rulj) <ct
By definition,
Piv(z,) = {(j,u(5)) € unw(z.) : B(h,u(h)) € unw(z,) with h > j,u(h) > u(j)}.

Piv(z,) takes O(L)-time to compute since #unw(z,) < r —1 < L — 1. Hence we check

if x € Piv(z,) in O(L)-time. If this is false, we output a rejection. Otherwise, Proposition
outputs code(u”) in O(L?)-time. O

Proposition 5.12. If S = (sy, ..., s) € Trans(w,v) then h < L.

Proof. Let w := wy —% w; -2 ... - wy, = v be the path in 7 (w) associated to S. By (T.1)
and (T.2), z,,,, is weakly northwest of z,,,. Hence, for any fixed r, those t € [0, h — 1] with
Z,, in row 7 form an interval IV C [0, h — 1]. Since 1 < r < L, it suffices to prove

(28) #I07) < 2(r —1).

By (X.1) the transition moves acting on row r alternate between multi-(T.1) moves
(2, m,) and (T.2) moves. Thus to show (28), it is enough to prove

(29) #{t eI w,_y — w, isa (T.2) move} <7 — 1.

Consider a march move i with z,, , = (r,¢) and x = (i,w;_1(¢)) € Piv(zy, ,). By (T.2),
if (r,¢’) € D(w;_y) is in the same connected component as z,, ,, the move i takes (r,c)
strictly north of row r. Thus, each march move strictly reduces the number of components
in row 7. Let ¢, = min{t € I("}. Since there are at most r ¢’s weakly above row r, D(wy,)
has at most r — 1 (non-dominant) components in row r. Hence holds, as desired. [J

Proposition 5.13. Let v be vexillary with code(v) = (cy,...,cr) and L' < L. There exists an
O(L?*)-time algorithm to check if R = (ri;)1<ij<1 is R = R(T) for some T € SSYT(A(v), ¢(v)).

Proof. Since L' < L, itis O(L?)-time to calculate ¢(v), A(v). Let
L/

)\i = ZT,‘J‘, for 1 S 1 S L,.

j=1

First verify (in O(L)-time) that A\; > A, for 1 <i < L' —1. Then R = R(T) where T is the
(unique) row weakly increasing tableau of shape A with r;; many j’s in row i.
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To verify T' € SSYT(A(v), ¢(v)) we must check that it is (i) is flagged by ¢(v), (ii) has
shape A(v), and (iii) is semistandard. For (i), we need

(30) Tij = 0 lfj > ¢(’U)i, for all 1,] € [L/]
For (ii), we need
(31) i = A(v); for each i € [L'].
For (iii), it remains to ensure that 7" is column strict, i.e.,
(32) Znﬂj/ < Zr”/ foreachi e [L' —1],j € [L'].
3'<g 3'<J
We found the mequahtles 1) and (32) from a (preprlnt) version of [10]. The inequalities
, 1), and (32) can be checked in O(L?)-time since 4, j € [L'] C [L]. O

The following completes our proof that we can check that (S, R) € X, ,, in L°"-time.

Proposition 5.14. Given (S, R) € X and (code(w), o), one can determine if (S, R) € Xy, in
LOW-time.

Proof. By Propos1t1ons and[5.12) n combined, one determines in O(L*)-time if S encodes

apath w := wy 5 w; 22 - % wy, = vin T(w). If so, the length of code(v) is at
most L. Thus, using Theorem 5.1, one checks v is vexillary in O(L?)-time. This decides
if S satisfies (X.1'). Proposition checks R satisfies (X.2") in O(L?)-time. Finally since
h < L?, computing delwt(S) takes O(L?)-time. Hence (X.3") is checkable in O(L?) time. [

Proof of Theorem 5.6} By Proposition[5.9] # X, ., = ¢a,.- By Proposition5.12} (S, R) € #Xa..,
only if the list S has at most L? elements. Assuming this, we check (S, R) satisfies (X.1)
and (X.2) in O(L?)-time. Using Proposition[5.14, we can verify (S, R) € X, in LO-time.
Thus, given input a and code(w), computing ¢, ,, is in #P. O

5.4. Hardness, and the conclusion of the proof of Theorem Schur polynomials are
an important basis of the vector space of symmetric polynomials The Schur polynomial
sy = axys/a; where X = (A} > Xy > - >\, >0), a, := det(z,’ )ij=1,and 0 = (n —1,n —
2,...,2,1,0). The flagged Schur function of Section is a generalization of the Schur
polynomial.

A permutation w is grassmanman if it has at most one descent i, i.e., where w(i) > w(i+1).
Given a partltlon ()\1 >Ny > e > AL > O) define a grassmanman permutatlon W) by
setting

w(i) =i+ Ap_jyq for 1 <i < L.

For w), grassmannian, it is well-known (see, e.g., [8]) that

(33) code(w,\) = (/\L, )\L—h ey )\1)
Moreover,
(34) Guy = sa(z1, .. 1) = D Kyar®,
ané

where K , is the Kostka coefficient. This number counts semistandard tableaux of shape A
with content a.
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By (64,
(35) Cawy = K/\,Oc-

By Theorem[5.6] counting ¢, ,, is in #P. Suppose there is an oracle to compute ¢,,, in poly-
nomial time in the input length of (code(w), ). This input length is the same as for the
input A, a for K, ,. Hence and combined imply a polynomial-time counting re-
duction from {c, ., } to Kostka coefficients. Now H. Narayanan [10] proved that counting
K o is a #P-complete problem. Thus counting ¢, is a #P-complete problem. O

Remark 5.15. Suppose the input for counting ¢, ., is (a,w) where w € S, (in one-line
notation). Then the above counting reduction is not polynomial time in the input length
of the Kostka problem. For example, suppose A = o = (2%,2%, ... 2%) (L-many). Then
the input length of this instance of the Kostka problem is 2L? € O(L?). On the other hand,
wy € Sp.or. Therefore, a polynomial time algorithm for the Schubert coefficient problem
in n would have Q(2%) run time for the Kostka problem.

It seems unlikely that there is a polynomial-time reduction under this input assump-
tion. This is our justification to encode w via code(w) rather than one line notation. O
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