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Abstract

This note is part of the ICLUE Summer 2022 program, where I gave a lecture on an intro-

duction to the Hecke Algebra and Kazhdan-Lusztig polynomials.

1 Coxeter System

Definition 1.1 (Coxeter System). Formally, a Coxeter group can be defined as a group with the

presentation

〈s1, s2, . . . , sn | (sisj)mij = 1〉

where the coefficients mij need to satisfy the following conditions:

1. mii = 1 for all i.

2. mij ≥ 2 for i ∕= j

3. mij = ∞ means no relation of the form (sisj)
m should be imposed.

The pair (W,S) where W is a Coxeter group with generators S = {r1, . . . , rn} is called a Coxeter

system.

Several observations can be made immediately from this definition:

1. The generators si’s are all reflections (involutions).

2. mij = mji for any i, j. This is because, if (xy)m = 1, then

(yx)m = y(xy)my = yy = 1.

Example 1.2. As expected, the symmetric group Sn is isomorphic to the Coxeter group W made

of {s1, · · · , sn−1} and the relations defined by (sisi+1)
3 = 1. In order words, mij = 1 when i = j;

mij = 3 when |i− j| = 1, and 0 otherwise.

Definition 1.3 (Length Function). Since the generators s ∈ S have order 2 in W , each w ∕= 1 in

W can be written in the form w = s1s2 · · · sr for some si (not necessarily distinct) in S. If r is as

small as possible, call it the length of w, written ℓ(w), and call any expression of w as a product

of r elements of S a reduced expression. By convention, ℓ(1) = 0.
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Proposition 1.4. Some elementary properties of the length function.

1. ℓ(w) = ℓ(w−1).

2. ℓ(ww′) ≤ ℓ(w) + ℓ(w′)

3. ℓ(ww′) ≥ ℓ(w)− ℓ(w′)

4. ℓ(w)− 1 ≤ ℓ(ws) ≤ ℓ(w) + 1.

Proof. (1) is immediate. (2) follows from the possible cancelation made when concatenating w and

w′. (3) follows from applying (2) at the pairs ww′ and (w′)−1. (4) follows from applying (2) and

(3) at w′ = s.

Definition 1.5 (Reflection). Let (W,S) be a Coxeter system. The set of reflections T are defined

to be T =
!
wsw−1 | w ∈ W, s ∈ S

"
.

Remark. The definition is motivated by the following facts.

1. For any t ∈ T , we have t2 = 1.

2. Clearly S ⊂ T , and we sometimes call S the set of simple reflections.

3. In the case of symmetric groups, S is the set of adjacent transpositions. Since

σ(i, i+ 1)σ−1 = (σ(i),σ(i+ 1)),

it follows that T in Sn is the set of all transpositions.

Now it’s clear why we call T the set of reflections.

The following theorem, which we state without proof, is at the heart of the Coxeter system.

Theorem 1.6 (Exchange Conditions). Let w = s1 · · · sr (si ∈ S), not necessarily a reduced ex-

pression. Suppose a reflection t ∈ T satisfies ℓ(wt) < ℓ(w). Then there is an index i for which

wt = s1 · · · #si · · · sr (omitting si). If the expression for w is reduced, then i is unique.

2 Bruhat Order

Among the possible ways to partially order W in a way compatible with the length function, the

most useful has proven to be the Bruhat ordering, defined as follows. Recall that a partial order

can be converted to a directed graph, so we shall start from there.

Definition 2.1. Let T be the set of reflections in W with respect to roots. Write w′ → w

if w = w′t for some t ∈ T with ℓ(w) > ℓ (w′). Then define w′ < w if there is a sequence

w′ = w0 → w1 → . . . → wm = w. It is clear that the resulting relation w′ ≤ w is a partial ordering

of W (reflexive, antisymmetric, transitive), with 1 as the unique minimal element.
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Remark (1). The reason why the Bruhat order is a partial order is the following.

• (Reflexive): Obvious.

• (Transitive): Suppose w1 ≤ w2 and w2 ≤ w3. If any of the two ≤ is equality, then there’s

nothing to prove. If not, then there exists a chain w1 → · · · → w2 → · · ·w3, and ℓ(w1) <

ℓ(w3)), so w1 ≤ w3.

• (Symmetric): Suppose w1 ≤ w2 and w2 ≤ w1. If any of the two ≤ is not equality, say the

first one, then ℓ(w1) < ℓ(w2) ≤ ℓ(w1), which is a contradiction, so w1 = w2.

Remark (2). The relation “→” can be used to generate a directed graph, called the Bruhat Graph.

The Bruhat order is obtained from this graph by “transitive closure,” i.e., throwing in all the

missing relations that come from transitivity.

Figure 1: The Bruhat graph of S3.

We need the following proposition to prove an equivalent definition of Bruhat order.

Proposition 2.2. Let w′ ≤ w and s ∈ S. Then either w′s ≤ w or else w′s ≤ ws (or both).

Theorem 2.3 (Subexpression). Let w = s1 · · · sr be a fixed, but arbitrary, reduced expression for

w. Then w′ ≤ w if and only if w′ can be obtained as a subexpression of this reduced expression.

Proof. Let us first show that any w′ < w occurs as a subexpression of the given reduced expression

for w. Start with the case w′ → w, say w = w′t. Since ℓ (w′) < ℓ(w), the Strong Exchange Condition

can be applied to the pair t, w to yield w′ = wt = s1 · · · #si · · · sr for some i. This argument can be

iterated, and so w′ must be a subexpression of (any) reduced expression of w.

In the other direction, we are given a subexpression w′ = si1 · · · siq of w and must show it to be

≤ w. Here we can use induction on r = ℓ(w), the case r = 0 being trivial. If iq < r, then w′ is a

subexpression of s1 · · · sr−1, so by the induction hypothesis:

si1 · · · siq ≤ s1 · · · sr−1 = wsr < w.

On the other hand, if iq = r we first use induction to get si1 · · · siq−1 ≤ s1 · · · sr−1, and then apply

Proposition 2.2 to get either

si1si2 · · · siq ≤ s1 · · · sr−1 < w or si1si2 · · · siq ≤ s1s2 · · · sr = w.

In either case, w′ < w.
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Remark. Theorem 2.3 is an extremely important characterization of Bruhat order, though it might

seem implausible at first because of its independence from the choice of reduced words of w. Tran-

sitivity would be far from obvious. But it helps to make explicit computations more transparent.

3 Generic Algebra and Hecke Algebra

Let A be a commutative ring with 1. Let (W,S) be a Coxeter system. We shall begin with a

very general construction of associative algebras over a commutative ring A. Such an algebra will

have a free A-basis parametrized by the elements of W , together with a multiplication law which

reflects in a certain way the multiplication in W . The algebra will also depend on some parameters

as, bs ∈ A(s ∈ S), subject only to the requirement that as = at and bs = bt whenever s and t are

conjugate in W .

The starting point for the construction is a free A-module E on the set W , with basis elements

denoted Tw (w ∈ W ).

Definition 3.1 (Generic Algebra). Given elements as, bs as above, there exists a unique structure

of associative A-algebra on the free A-module E , with T1 acting as the identity (check), such that

the following conditions hold for all s ∈ S,w ∈ W :

TsTw = Tsw if ℓ(sw) > ℓ(w) (1)

TsTw = asTw + bsTsw if ℓ(sw) < ℓ(w) (2)

The algebra described by the theorem, denoted EA (as, bs), will be called a generic algebra.

Remark. Many familiar structures can be obtained from the generic algebra. For example, let

as = 0 and bs = 1, then we have the group algebra A[W ]. Another choice of parameters leads to a

“Hecke algebra”, which will be defined later.

Next we will focus on an equivalent definition of the generic algebra.

Proposition 3.2. The two conditions in Definition 3.1 are equivalent to the following:

TsTw = Tsw if ℓ(sw) > ℓ(w) (3)

T 2
s = asTs + bsT1 if ℓ(sw) < ℓ(w) (4)

Proof. (3)(4) are clearly consequences of (1)(2). To obtain (2) from (3)(4), suppose ℓ(sw) < ℓ(w).

Since w = ssw, we have ℓ(sw) < ℓ(s(sw)). Therefore, apply (3) to obtain

TsTsw = Tssw = Tw.

Now, multiply both sides by Ts and apply (4) to obtain

TsTw = (asTs + bsT1)Tsw

= asTsTsw + bsTsw

= asTw + bsTsw,

which is exactly (2).
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Having constructed generic algebras EA (as, bs) over an arbitrary commutative ring A, we now

make a special choice to obtain the Hecke Algebra.

Definition 3.3 (Hecke Algebra). Let A be the ring Z
$
q, q−1

%
of Laurent polynomials over Z in

the indeterminate q. With the further convention that as = q− 1 and bs = q for all s ∈ S, we write

H for the resulting generic algebra and call it the Hecke algebra of W .

The relations (3) and (4) now become:

TsTw = Tsw if ℓ(sw) > ℓ(w)

T 2
s = (q − 1)Ts + qT1 if ℓ(sw) < ℓ(w)

It should be noted that all the conditions we listed here are one-sided, i.e. s always appears on

the left of w. However, one can easily prove by induction on ℓ(w) that the right-handed version of

these conditions are true as well.

The first special feature to notice in H is the existence of inverses for the basis elements Tw,

because of the presence of q−1. Indeed, the relations imply that for all s ∈ S :

T−1
s = q−1Ts −

&
1− q−1

'
T1.

If w = s1 · · · sr (reduced expression), we know that Tw = Ts1 · · ·Tsr . Therefore every Tw is invertible

in H. However, as ℓ(w) increases it will be progressively more complicated to work out the inverse

explicitly as a linear combination of the canonical basis of H. What we can do in this direction

introduces an important family of polynomials (the “R polynomials”).

4 R-polynomials

Theorem 4.1. For all w ∈ W ,

(Tw−1)−1 = εwq
−1
w

(

x≤w

εxRx,w(q)Tx,

where Rx,w(q) ∈ Z[q] is a polynomial of degree ℓ(w) − ℓ(x) in q, and where Rw,w(q) = 1. Here εw

is defined to be (−1)ℓ(w), and qw is defined to be qℓ(w).

Remark. While we will not cover the entire (complicated) proof, we shall verify two special cases:

the statement is clear when w = 1, as εw = (−1)0 = 1, qw = q0 = 1, and so

εwq
−1
w

(

x≤w

εxRx,w(q)Tx =
(

x≤w

Rx,w(q)Tx = T1.

The statement is also clear if w = s ∈ S. We have (Ts−1)−1 = T−1
s , and εs = −1, qs = q. If we set

R1,s = q − 1, then x ≤ s if and only if x = 1 or s. Therefore,

εsq
−1
s

(

x≤s

εxRx,s(q)Tx = (−1)q−1 [R1,s(q)T1 −Rs,s(q)Ts]

= −q−1 [(q − 1)T1 − Ts]

= q−1Ts −
&
1− q−1

'
T1

= T−1
s .
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The general statement is obtained by induction on ℓ(w). For convenience, define Rx,w to be 0

whenever x ∕≤ w.

There is an explicit algorithm for computing Rx,w recursively, starting with the fact that Rw,w =

1 for all w ∈ W , while Rx,w = 0 unless x ≤ w. For the induction step, we need to compute Rx,w,

assuming that all polynomials Ry,z are known for ℓ(z) < ℓ(w). Fix s ∈ S for which sw < w. Then

two configurations have to be dealt with, as in Lemma 7.4 :

(A) x < w, sx < x (forcing sx < sw). Here we found that Rx,w = Rsx,sw, which is already known

since sw < w.

(B) x < w, x < sx (forcing sx ≤ w and x ≤ sw). Here we found that Rx,w = (q−1)Rx,sw+qRsx,sw,

both terms of which are already known. (Recall that the first term has degree ℓ(w) − ℓ(x),

while the second term has lower degree and might be 0 .)

5 Kazhdan-Lusztig Polynomials

Now we begin to introduce a little bit about Kazhdan-Lusztig polynomials, which will be covered

in greater detail in another lecture.

Definition 5.1. Let ι : H → H be the involution map that sends q to q−1 and Tw to (Tw−1)−1.

We need to verify that ι is an involution. First we check that it ι2(Ts) = Ts for all s ∈ S.

ι(Ts) = T−1
s = q−1Ts −

&
1− q−1

'
T1

ι2(Ts) = q
$
q−1Ts −

&
1− q−1

'
T1

%
− (1− q)T1

= Ts − (q − 1)T1 + (q − 1)T1

= Ts.

Since H is generated by Ts : s ∈ S, it remains to be shown that ι : H → H is a ring homomorphism,

i.e. ι(Tw′w) = ι(Tw′)ι(Tw). To this end, one can first show that ι(Ts)ι(Tw) = ι(Tsw) for all s ∈ S

and w ∈ W , and then use induction to obtain the claim.

The involution ι will play a key role in the definition of Kazhdan-Lusztig polynomials. We now

look for a new basis {Cw} of the A-module H, indexed again by W , but consisting of elements

fixed by the involution ι.

We can see how to get started by experimenting with the following formula :

T−1
s = q−1Ts −

&
1− q−1

'
T1.

It is easy to check that ι sends Ts − qT1 to q−1 (Ts − qT1), as

ι(Ts − qT1) = T−1
s − q−1T1

= q−1Ts −
&
1− q−1

'
T1 − q−1T1

= q−1Ts − T1

= q−1(Ts − qT1).
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Unfortunately this is not fixed by ι. If we are willing to introduce a square root of q (written q
1
2 ),

we therefore have an element fixed by ι for each s ∈ S (check):

Cs := q−
1
2 (Ts − qT1) .

Formally, we replace Z[q, q−1] by the ring Z[q
1
2 , q−

1
2 ] of Laurent polynomials in the indeterminate

q
1
2 , so that the previous ring A becomes a subring of the new one. This has no effect on the previous

formal calculations in H.

It is tempting to construct further ι-invariants simply by multiplying various Cs(s ∈ S), in the

spirit of the way the original basis elements Tw of H are built out of the Ts. This, however, has

two problems:

1. The labeling may be confusing. For example, CsCtCs ∕= CtCsCt when sts = tst, so we can’t

just label the element to be Csts.

2. The polynomials arising as the coefficients are too complicated.

What we are seeking in general is an ι-invariant element Cw which is a linear combination of

the Tx for x ≤ w (the coefficient of Tw being nonzero) and whose polynomial coefficients are as

uncomplicated as possible. The following basic theorem of Kazhdan-Lusztig [1] provides an optimal

choice:

Theorem 5.2. For each w ∈ W there exists a unique element Cw ∈ H having the following two

properties:

(a) ι (Cw) = Cw

(b) Cw = εwqw
1
2

(

x≤w

εxq
−1
x P x,wTx, where Pw,w = 1 and Px,w(q) ∈ Z[q] has degree ≤ 1

2(ℓ(w) −

ℓ(x)− 1) if x < w.

The polynomials Px,w turn out to be of fundamental interest. They are called the Kazhdan-

Lusztig polynomials. They are appreciably more subtle than the earlier Rx,w. For example, their

precise degrees are not readily predictable. It is conjectured in Kazhdan-Lusztig that all coeffi-

cients of Px,w are nonnegative, but this remains unproved (at the time of writing) except in some

important special cases.
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