05/18/22 Notes

Dylan Roscow and Casey Appleton

May 18, 2022

- Next meeting time: 10am on Friday at AH347

1 Group Rings and G-Modules

Recall, a representation of a group G in a vector space V over \mathbb{F} is a homomorphism $f: G \rightarrow \mathrm{GL}(V)$. We can change our perspective and think of this as scalar multiplication on V by letting $g \cdot \vec{v} \mapsto[f(g)](\vec{v})$.

Definition 1.1 (group ring). The group ring $\mathbb{F}[G]$ is the set of all finite formal linear combinations of group elements:

$$
\mathbb{F}[G]=\left\{\sum_{i=1}^{n} a_{i} g_{i} \mid a_{i} \in \mathbb{F}, g_{i} \in G, n \in \mathbb{Z}^{+}\right\}
$$

$\mathbb{F}[G]$ is a vector space over \mathbb{F}, and $\mathbb{F}[G]$ is a ring with multiplication as in a polynomial, simplifying with the group operation if necessary. For example: $\left(a g_{1}+b g_{2}\right) \cdot\left(c g_{1}+d g_{2}\right)=a c\left(g_{1} \cdot g_{1}\right)+a d\left(g_{1} \cdot g_{2}\right)+b c\left(g_{2} \cdot g_{1}\right)+b d\left(g_{2} \cdot g_{2}\right)$.

Definition 1.2 (module). For a ring R, a (left) R-module is a set M with two operations $+: M \times M \rightarrow M$ and $\cdot: R \times M \rightarrow M$ such that $(M,+)$ is an abelian group and for all $r, s \in R$ and $x, y \in M$:

1. $r \cdot(x+y)=r \cdot x+r \cdot y$
2. $(r+s) \cdot x=r \cdot x+s \cdot x$
3. $(r \cdot s) \cdot x=r \cdot(s \cdot x)$
4. $1 \cdot x=x$

Then, for a given representation $f: G \rightarrow \mathrm{GL}(V)$, it follows that V is an $\mathbb{F}[G]$-module, with scalar multiplication extended naturally from the $g \cdot \vec{v}$ defined above. For short we simply say G-module.

Proposition 1.3. V is a G-module \Longleftrightarrow There exists a representation $f: G \rightarrow \mathrm{GL}(V)$.
Proof. (\Longrightarrow) Suppose V is a G-module. Define $f: G \rightarrow \mathrm{GL}(V)$ by $f(g): \vec{v} \mapsto g \cdot \vec{v}$. This is an invertible linear map since $g \cdot\left(v_{1}+v_{2}\right)=g \cdot v_{1}+g \cdot v_{2}$ and $g^{-1} \cdot(g \cdot v)=\left(g^{-1} \cdot g\right) \cdot v=1 \cdot v=v$ by the definition of a module. f is a homomorphism because $\left(g_{1} \cdot g_{2}\right) \cdot v=g_{1} \cdot\left(g_{2} \cdot v\right)$. Hence, f is a representation.
(\Longleftarrow) Suppose $f: G \rightarrow \mathrm{GL}(V)$ is a representation. Define scalar multiplication by:

$$
\left(a_{1} g_{1}+\cdots+a_{n} g_{n}\right) \cdot v=a_{1} \cdot\left[f\left(g_{1}\right)\right](v)+\cdots+a_{n} \cdot\left[f\left(g_{n}\right)\right](v)
$$

The first property follows from the linearity of $f(g)$. The second property follows directly from the definition. The third and fourth properties follow from the properties of a homomorphism since $f\left(g_{1} \cdot g_{2}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right)$ and $f(1)=\mathrm{id}_{V}$. Hence, V is a G-module.

Definition 1.4 (G-submodule). A subset $W \subseteq V$ of a G-module is a G-submodule if it is closed under addition and multiplication by elements of G.

A representation is a subrepresentation of V if it is a G-submodule of V as a G-module. Every G-module V has the submodules V and $\{0\}$. These are called the trivial submodules.

2 More Examples of Representations

Definition 2.1 (degree). The degree of a representation $f: G \rightarrow \mathrm{GL}(V)$ is the dimension of V.
Example 2.2. $f: G \rightarrow \mathrm{GL}(V), f(g)=I_{V}$, or in terms of G-modules, $g \cdot v=v, \forall g \in G, v \in V$
The example above is known as the Trivial Representation
Example 2.3. $G=(\mathbb{Z},+), V=\mathbb{R}^{3}, f(n)=I_{3}+n D+\frac{n(n+1)}{2} D^{2}$, where $D_{i, j}=1$ if $j=i+1$, and 0 otherwise.

That f is a group homomorphism can be seen from the fact that $f(n)=f(1)^{n}$, which can be shown by binomial expansion of $\left(I_{3}+D+D^{2}\right)^{n}$ and $\left(I_{3}-D\right)^{n}$ for $n \geq 0$, and noting that $\left(I_{3}+D+D^{2}\right)\left(I_{3}-D\right)=I_{3}-D^{3}$, $D^{3}=0$.

Example 2.4. $G=\{z \in \mathbb{C}:|z|=1\}, f(z)=z^{n}$ for some $n \in \mathbb{Z}$
In fact these are all inequivalent irreducible representations of G, and form an exhaustive list of all the irreducible representations of G. Furthermore, all of these are one-dimensional.
But what does it mean for two representations to be inequivalent, or irreducible?

3 Irreducible Representations and Equivalence of Representations

Definition 3.1. A representation $f: G \rightarrow \mathrm{GL}(V)$ is irreducible if $\{0\}$ and V are the only subspaces of V that are invariant under $f(g)$ for every $g \in G$.

In terms of G-modules, a G-module V is an irreducible representation of G iff it has no nontrivial submodules
Example 3.2 (a reducible representation). Let \mathfrak{S}_{3} act on \mathbb{C}^{3} by: $\sigma \cdot\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}\right)$. Then, \mathbb{C}^{3} has two G-submodules given by $\{(v, v, v) \mid v \in \mathbb{C}\}$ and $\left\{\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{C}^{3} \mid v_{1}+v_{2}+v_{3}=0\right\}$

Proposition 3.3. A representation $f: G \rightarrow \mathrm{GL}(V)$ is irreducible $\Longleftrightarrow \forall v \in V \backslash\{0\}$ the vectors $G \cdot v:=$ $\{f(g) v: g \in G\}$ span V.

Proof. (\Longrightarrow) Since the span of $G \cdot v$ is a G-invariant subspace of V (Because $f(h)(f(g) v)=f(g h) v)$, and it contains at least one nonzero vector, v, by irreducibility of f , it must be V itself.
(\Longleftarrow) If W is a G-invariant subspace of V, then either $W=0$ or W contains at least one nonzero vector w. In the latter case, since W is a G-invariant subspace of $V, V=\operatorname{Span}(G \cdot w) \subseteq W \subseteq V$, and therefore $W=V$.

Definition 3.4. If G be a group, V and W are vector spaces, and $f_{1}: G \rightarrow \mathrm{GL}(V)$ and $f_{2}: G \rightarrow \mathrm{GL}(W)$ are representations of G, then f_{1} and f_{2} are equivalent representations of G if there is some invertible linear map $T: V \rightarrow W$ such that $\forall g \in G, f_{2}(g)=T f_{1}(g) T^{-1}$.

In other words, f_{1} and f_{2} are equivalent representations of G if $\forall g \in G, f_{2}(g)$ is the same as $f_{1}(g)$ up to a change of basis, and the change of basis is the same for all g.
In terms of G-modules, two representations of G, V and W, are equivalent as G-modules iff there is some bijective module homomorphism $T: V \rightarrow W$ which preserves the action of G. That is, $T(g \cdot v)=g \cdot T(v)$.

