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1 Introduction

1.1 Preliminaries

Definition 1.1. A manifold is a locally Euclidean Hausdorff space which has a countable basis.

Example 1.2. Rn itself (because it is trivially homeomorphic to itself).

Example 1.3. Any sphere Sn by taking a small open ball around the point.

Example 1.4. Any torus Tn = (S1)n and more generally any product space M =
∏N

i=1Mi

Example 1.5. An open subset of Rn.

Example 1.6. GLn(R) (associating matrices to points in Rn2

) since it is an open subset.

Definition 1.7. A coordinate chart on an n-dimensional manifold is a pair (U,φ) consisting of an

open set U of the manifold and a homeomorphism φ : U → V with an open set V ⊆ Rn.

An atlas is a family of coordinate charts which covers the manifold.

If the domains of two coordinate charts overlap, we want to “think of” the codomains as over-

lapping. To do this, we define the transition functions by composing one chart with the inverse of

the other.

Definition 1.8. A smooth atlas is an atlas whose transition functions are smooth (as functions

Rn → Rn).

We say two smooth atlases are equivalent if their union is also a smooth atlas. This gives an

equivalence relation ∼ on smooth atlases.

Definition 1.9. Let SA(M) denoted the set of smooth atlases on M . Then, a smooth structure on

M is an element of SA(M)/ ∼.

Definition 1.10. A smooth manifold (M,A) is a manifold M together with a maximal smooth

atlas A. That is, a smooth atlas which is not a proper subset of any smooth atlas.
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We can define a smooth manifold by defining a smooth atlas and let the smooth structure be its

equivalence class.

Example 1.11 (Very Basic Example). On R consider the atlas consisting of only the chart (R, id)
with id(x) = x.

We might hope that R would have only one equivalence class and thus a unique smooth structure,

but un fortunately, R many different smooth structures. And, typically a manifold will have many

distinct smooth structures.

Example 1.12 (Distinct). (R, φ) with φ(x) = x3 gives a distinct smooth structure on R.

Sometimes the notion of “smooth” does not align with intuition.

Example 1.13 (Weird). The graph of |x| in R2 with the chart given by (x, y) 7→ x.

An example with more than one chart

Example 1.14 (Circle). S1 by taking two overlapping intervals which cover it.

Similarly all the manifolds above are actually smooth manifolds. In fact, it is actually difficult

to find a manifold that has no smooth structures. The simplest example in the 4-dimensional E8

manifold.

Definition 1.15. A function f :M → N between n-dimensional manifolds M and N is smooth at

a point p ∈ M if there is chart (UM , φM ) containing p and a chart (UN , φN ) containing the image

f(UM ) such that φN ◦ f ◦ φ−1
M : VM → VN is smooth (in the calculus sense).

If f is smooth at every point of M , it is called a smooth map.

Definition 1.16. A (smooth) diffeomorphism is a smooth bijection whose inverse is also smooth.

Although we showed R to have distinct smooth structures, these are actually diffeomorphic with

the map x 7→ x3 (note this is smooth because it is relative to the other smooth structure). In fact,

Rn always has a unique smooth structure up to diffeomorphism, except for the case of R4 which has

infinitely many smooth structures.
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1.2 Lie Groups

Definition 1.17. A topological group is a group (G, τ, ◦) such that G is a topological space and the

maps ◦ : G×G→ G and −1 : G→ G are continuous.

Definition 1.18. A Lie group is a group (G, ◦) such that G is a smooth manifold and the maps

◦ : G×G→ G and −1 : G→ G are smooth.

Example 1.19. Rn (as one might expect)

Example 1.20. S1 with modular addition. And, S3 (identified with unit quaternions (S1 can also

be identified with unit complex numbers))

Interestingly these are the only spheres which are Lie groups (other than the degenerate case of S0).

Example 1.21. Any torus Tn = (S1)n and more generally any product space M =
∏N

i=1Mi

Example 1.22. GLn(R), matrix multiplication is smooth since it is a polynomial in the entries of

the matrix

1.3 A Categorical Perspective

Maybe this definition seems arbitrary, i.e. maybe it was be more natural for the maps to be home-

omorphisms or diffeomorphisms. Here is some categorical motivation for why this definition is

natural.

Some preliminary definitions if necessary:

Definition 1.23. In a category C a terminal object is a object 1 of C such that for every obejct X

there is exactly one morphism f : X → 1.

Think of the trivial group {e}.

Definition 1.24. In a category C, the product of two objects X and Y is an object X×Y with two

morphisms π1 : X × Y → X and π2 : X × Y → Y (called the projections) satisfying the following

universal property: For any object A and morphisms f1 : A → X and f2 : A → Y there exists a

unique morphism f : A→ X × Y such that the following diagram commutes:

A

X X × Y Y

f
f1 f2

π1 π2

More succinctly, it is the limit of a diagram of {• •}.
In a category with products, given two morphisms f : A → A′ and g : B → B′ we can define a

unique morphism f×g : A×B → A′×B′ using the universal property. Moreover, with the universal

property we can define a diagonal morphism d : G → G × G by letting f1 = f2 = idG. Products

correspond exactly with Cartesian products in Set, direct products in Grp, direct sums in VectK ,

and product spaces in Top.
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Definition 1.25. In a category C with a terminal object 1 and products, a group object is an object

G together with three morphisms:

• “composition” m : G×G→ G

• “identity” e : 1 → G

• “inverse” i : G→ G

Satisfying the following properties:

1. “associativity” m ◦ (m× idG) = m ◦ (idG ×m)

2. “identity” m◦ (idG ×e) = π1 and m◦ (e× idG) = π2 where π1 : G×1 → G and π2 : 1×G→ G

are the projections.

3. “invertibility” Let d : G → G×G be the diagonal morphism and eG = e ◦ (G → 1) : G → G,

then m ◦ (idG ×i) ◦ d = eG and m ◦ (i× idG) ◦ d = eG

This lets us define what “groups” are in a variety of different categories:

• In Set, group objects correspond to actual groups.

• In Grp, group objects correspond to Abelian groups.

• In Top, group objects correspond to topological groups.

• In the category of smooth manifolds, group objects correspond to Lie groups.

• In VectK , every vector space is a group object in a unique way.

• In the category of algebraic varieties, group objects are called algebraic groups.

• In the category of schemes, group objects are called group schemes.

1.4 Lie Subgroups

A differentiable function is defined exactly like a smooth map except replacing “smooth” with

“differentiable”.

For a smooth manifold M fix a point p and a chart (U,φ), let Γ(p) denote the set of all curves

γ : (−1, 1) →M such that γ(0) = p and φ ◦ γ is differentiable.

Definition 1.26. The tangent space of M at p ∈ M is defined to be TpM = Γ(p)/ ∼ under the

equivalence relation γ ∼ ψ if and only if

(φ ◦ γ)′(0) = (φ ◦ ψ)′(0)

It can be shown that this definition is independent of the chart chosen. And TpM can be made

into a vector space by associating [γ] to the tangent vector (φ ◦ γ)′(0). As a “sneak peak”, when G

is a Lie group, the the tangent space at the identity TeG is isomorphic to its associated Lie algebra.
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Definition 1.27. The differential of a differentiable function f :M → N at the point p ∈M is the

linear map dfp : TpM → Tf(p)N defined by:

dfp([γ]) = [f ◦ γ]

Definition 1.28. An immersion between to smooth manifolds is a differentiable function whose

differential at every point is injective.

Definition 1.29. H is a Lie subgroup of a Lie group G if H ⊆ G and the inclusion map i : H ↪→ G

is injective immersion and a group homomorphism.

2 Haar Measure

2.1 Defining the Haar Measure

Remark 2.1. Motivation (From a Representation Theory Perspective) Throughout the

representation theory of finite groups, we often want to do “average tricks” where we take a sum

over the whole group of some quantity. For example, in the Weyl Unitary Trick, we start with an

arbitrary inner product ⟨x, y⟩′ on a representation V of G and construct a new inner product such

that ≤ g · x, g · y⟩ = ⟨x, y⟩ by setting ⟨x, y⟩ = 1
|G|
∑

g∈G⟨g · x, g · y⟩′. However, this is not possible for

infinite groups (in particular, Lie groups) as the summation could diverge. So, we instead would like

to replace the summation with an integration. Moreover, we want the integral to be compatible with

the group structure (and with the topological structure if it is a topological group). In particular

we want: ∫
G

f(t) dt =

∫
G

f(gt) dt

for any g ∈ G. What we can show is that this is possible under certain conditions by constructing

a measure on G and using the Lebesgue integral with respect to this measure.

Definition 2.2. A sigma-algebra on X is a family of subsets Σ ⊆ P(X) such that:

1. X ∈ Σ

2. Closure under complements E ∈ Σ =⇒ Ec ∈ Σ (where X is the universal set)

3. Closure under countable unions E1, . . . , En ∈ Σ =⇒ E1 ∪ · · · ∪ En ∈ Σ

Example 2.3. The trivial sigma-algebra {∅, X}.

Example 2.4. The discrete sigma-algebra P(X).

Example 2.5. For any given subset A ⊆ X, the sigma-algebra {∅, A,Ac, X}.
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Lemma 2.6. The intersection of sigma-algebras is a sigma-algebra

Proof. Let Σ1 and Σ2 be sigma-algebras on X. X ∈ Σ1 ∩ Σ2 since it is contained in both by

definition. For any E ∈ Σ1 ∩ Σ2, E
c is in both so Ec ∈ Σ1 ∩ Σ2. Finally, if E1, . . . , En ∈ Σ1 ∩ Σ2,

then E1 ∪ · · · ∪En is in both so E1 ∪ · · · ∪En ∈ Σ1 ∩Σ2. Therefore, Σ1 ∩Σ2 is a sigma-algebra.

This allows us to speak of the smallest sigma algebra containing a family of sets F by taking the

intersection of all the sigma algebras containing F as a subset. For a topological space, a natural

sigma-algebra is the smallest one containing all the open sets.

Definition 2.7. The Borel sigma-algebra B(X) of a topological space X is the smallest sigma-

algebra that contains all of its open sets.

Definition 2.8. Given a sigma-algebra Σ on a set X, a measure is a function µ : Σ → R such that:

1. Non-negative ∀E ∈ Σ : µ(E) ≥ 0

2. Null empty set µ(∅) = 0

3. Countably additive For all pairwise disjoint families {Ek}∞k=1 ⊆ Σ we have:

µ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek)

Example 2.9. The trivial measure on any sigma-algebra: µ(A) = 0.

Example 2.10. The counting measure on P(X): µ(A) = |A| if A is finite and ∞ if A is infinite.

Example 2.11. The Lebesgue measure, defined by extending the length function ℓ([a, b]) = b− a.

On the way to constructing a measure, we might make use of two “stepping stones” that slightly

weaken the definition:

Definition 2.12. Given a set X, an outer measure is a function µ : P(X) → R such that:

1. Non-negative ∀A ⊆ X : µ(A) ≥ 0

2. Null empty set µ(∅) = 0

3. Monotone For all A ⊆ B ⊆ X, we have: µ(A) ≤ µ(B)

4. Countably subadditive For all families {Ak}∞k=1 ⊆ P(X) we have:

µ

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

µ(Ak)

Note that even though the name “outer measure” makes it sound like it is a type of measure,

not every outer measure is actually a measure. Weakening this definition even more gives:
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Definition 2.13. Given a set X and any family of subsets A (not necessarily a sigma-algebra), a

content is a function µ : A → R such that:

1. Non-negative ∀A ⊆ A : µ(A) ≥ 0

2. Null empty set µ(∅) = 0

3. Countably subadditive For any A,B ∈ A such that A ∩ B = ∅ and A ∪ B ∈ A we have:

µ(A ∪B) = µ(A) + µ(B)

Now back to measures: For a topological space, we usually want some additional properties:

Definition 2.14. A measure µ : B(X) → R is called regular if it satisfies:

1. Outer regularity For any Borel set E: µ(E) = inf{µ(U) | U open, E ⊆ U}

2. Inner regularity For any open set U : µ(U) = sup{µ(K) | K compact,K ⊆ U}

For topological group, we would like two additional property:

Definition 2.15. A (left) Haar measure on a topological group G is a regular measure which is

finite on every compact set and is translation-invariant. That is: for any Borel set E and any g ∈ G,

we have: µ(gE) = µ(E).

Theorem 2.16 (Haar’s Theorem). Every locally compact Hausdorff topological group has a unique

non-trivial Haar measure up to a constant positive multiplicative factor.

2.2 Constructing the Haar Measure

In what follows, let G be a locally compact Hausdorff topological group. Note this applies to every

Lie group. Let K be the set of all compact subsets of G and U be the set of all open subsets of G

that contain the identity of G.

Remark 2.17. Overview of the construction We are going to construct the Haar measure in a

number of stages:

1. First, we will construct a function µU on compact sets parameterized by U ∈ U .

2. Next, we will take a “limit” of these functions to get a function µ defined on compact sets.

3. Then, we will extend µ with inner regularity to a function µ̄ which is defined on all open sets.

4. Then, we will extend µ̄ with outer regularity to a function ¯̄µ which is defined on all subsets.

5. Finally, we will restrict this function to the Borel sets and show that it is the Haar measure.

This is summarized with the following diagram:

µU
compact

“limit”−−−−→ µ
compact

inner regularity−−−−−−−−−−→ µ̄
open

outer regularity−−−−−−−−−−→ ¯̄µ
all

restrict−−−−→ η
Borel
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Definition 2.18. For K compact and V such that V ◦ ̸= ∅, define the covering number (K : V ) to

be the smallest number of left translates needed to cover K:

(K : V ) = min

{
|A|

∣∣∣∣∣K ⊆
⋃
x∈A

xV ◦

}

Lemma 2.19. For any g ∈ G, the map φg : G → G defined by x 7→ gx is a homeomorphism. In

particular, for any open set U , we have that gU is also open.

Proof. Composition is continuous so V = {(x, y) ∈ G2 | xy ∈ U} is open. Let (g,G) = {g} × G

Note that (g, x) 7→ x is a homeomorphism (g,G) → G. So, since V ∩ (g,G) is open in the subspace

topology on (g,G), π2(V ∩ (g,G)) is open in G (where π2 : (x, y) 7→ y is the projection map). Hence,

π2(V ∩ (g,G)) = {x ∈ G | (g, x) ∈ V } = {x ∈ G | gx ∈ U} = φ−1
g (U)

Hence, φg is continuous. Clearly φ−1
g = φg−1 so φg is bijective. And since g was arbitrary, φ−1

g is

also continuous. Therefore, φg is a homeomorphism.

Proposition 2.20. (K : V ) always exists and is always a non-negative integer. Moreover, we have

(K : V ) = 0 if and only if K = ∅.

Proof. For any set, letting A = G will most certainly cover K (as well as the whole space) with set

which are open by the above lemma since V ◦ is open. Since K is compact, there is a finite subcover.

Hence, (K : V ) is finite. Moreover, since it is the minimum of a set of non-negative integers, it is a

non-negative integer. If K = ∅ then A = ∅ covers it so (K : V ) = 0. If (K : V ) = 0 then A = ∅
covers K, meaning K is empty.

Fix a compact set with non-empty interior K0, this must exist since G is locally compact. For

any U ∈ U , define µU : K → R by:

µU (K) =
(K : U)

(K0 : U)

Lemma 2.21. For each U , we have: µU (K) ≤ (K : K0) for all K ∈ K

Proof. This equivalent to (K : U) ≤ (K : K0)(K0 : U). K0 is covered by n = (K0 : U) translates of

U , say by {gi}ni=1. Similarly, K is covered by m = (K : K0) translates of K0, say by {hj}mj=1. Thus,

K is covered by the translates of U by {gihj}n,mi,j=1,1. Hence, (K : U) is at most mn. Therefore,

(K : U) ≤ mn = (K : K0)(K0 : U)

Define the space X =
∏

K∈K[0, (K : K0)]. By the lemma, µU (K) ≤ (K : K0), so we can think of

each µU as a point in X, i.e. (µU (K1), µU (K2), . . . ).
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Remark 2.22. The Intuitive Idea We want to measure the relative size of K to K0, but for each

µU all we can use to measure it is U . Each U is a like a yardstick without any markings, all we can

do is lay it down and see how many it takes to cover K and K0 and take their quotient. A very large

U will give a very imprecise measurement, like “roughly a 3 : 4 ratio”. If we want a more precise

measurement, we need to use a smaller U to get something like a “29 : 37 ratio”. The hope is that

as we take smaller and smaller U ’s this ratio will converge to a single limit. In the picture, this

should look like a ball shrinking in on a point with each concentric ring corresponding to smaller

and smaller open sets.

Define the following set for each V ∈ U :

C(V ) = {µU | U ∈ U , U ⊆ V }

Lemma 2.23. {C(V )}V ∈U has the finite intersection property (the intersection of finitely many sets

in non-empty)

Proof. Since each Vk is open,
⋂n

k=1 Vk will also be open (and will also contain the identity). As

such, µ⋂n
k=1 Vk

is defined and is contain in each C(Vk). Thus,
⋂n

k=1 C(Vk) is non-empty.

We now use two classical results from topology: Tychnoff’s Theorem (A product of compact

spaces is compact) and that a space is compact if and only if any family of closed sets with the finite

intersection property has a non-empty intersection. By Tychonoff’s Theorem, X is compact. And,

by the classification of compact spaces
⋂

V ∈U C(V ) is non-empty. Thus, we can pick an arbitrary

function in
⋂

V ∈U C(V ). Call this function µ.

Proposition 2.24. µ(K1) ≤ µ(K2) whenever K1 ⊆ K2.

Proof. Clearly µU (K1) ≤ µU (K2) for all U since every covering of K2 is also a covering of K1. Now,

thinking of f ∈ X, as a function, evaluating f 7→ f(K) can be though of as a projection map. Thus,

h : f 7→ f(K2)−f(K1) is continuous as a function X → R. Thus, since µU (K1) ≤ µU (K2) for all U ,

h is also non-negative on C(V ) (because it is continuous). So, h(µ) ≥ 0 meaning µ(K1) ≤ µ(K2).

Lemma 2.25. Let K be compact and U be open with K ⊆ U . Then, there exists some V ∈ U such

that KV ⊆ U .

Proof. For any x ∈ K, let Wx = x−1U . Since x ∈ U we have x−1x = e ∈ Wx so Wx ∈ U . Since

multiplication is continuous, we can find a set Vx ∈ U such that VxVx ⊆ Wx (take preimage and

intersect the projections onto G, this is open since it is intersection of open sets and contains the

identity). Then, {xVx | x ∈ K} is an open cover of K so we can find x1, . . . , xn such that {xiVxi}ni=1

covers K. Define V =
⋂n

i=1 Vxi
. Now for any k ∈ K there is some xk such that k ∈ xkVxk

. Thus,

kV ⊆ xkVxk
Vxk

⊆ xkWxk
= U

Therefore, KV ⊆ U .
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Proposition 2.26. µ is a content on compact sets (that is a measure but with the countable union

property replaced with finite unions).

Proof. Clearly, µ is non-negative since µ ∈ X and µ(∅) = 0 since (∅ : U) = 0 for all U . Now, we

show µ is finitely additive in several steps.

First: that µ(K1 ∪K2) ≤ µ(K1) + µ(K2). Clearly µU (K1 ∪K2) ≤ µU (K1) + µU (K2) for each

U since every union of covering of K1 and K2 is a covering of K1 ∪ K2. Just as in the previous

lemma, the map h : f 7→ f(K1) + f(K2) − f(K1 ∪K2) is continuous as a function X → R. And,

since µU (K1 ∪K2) ≤ µU (K1) + µU (K2) for each U , h is non-negative for each C(V ). Thus, since

h(µ) ≥ 0 we have µ(K1 ∪K2) ≤ µ(K1) + µ(K2).

Second: that µU (K1 ∪K2) = µU (K1) + µU (K2) if K1U
−1 ∩K2U

−1 = ∅. Let {gi}(K1∪K2:U)
i=1 be

representatives that cover K1 ∪K2. Suppose for contradiction that for some gi, we have that giU

intersects both K1 and K2. Then, gi ∈ K1U
−1∩K2U

−1. A contradiction. Thus, each giU intersects

exactly one of K1 and K2. Thus, by taking two subsequences we can find two covers of K1 and K2

respectively. Hence, µU (K1) + µU (K2) ≤ µU (K1 ∪K2). Combining this with the previous gives the

result.

Third: that µ(K1∪K2) = µ(K1)+µ(K2) if K1∩K2 = ∅. Since G is Hausdorff, we can find open

sets K1 ⊆ U1 and K2 ⊆ U2 such that U1 ∩ U2 = ∅. By the above lemma, there exists V1, V2 ∈ U1

such that K1V1 ⊆ U2 and K2V2 ⊆ U . Let V = V1 ∩ V2. Then K1V ∩K2V = ∅ since U1 and U2 are

disjoint. Thus, for any U ∈ U with U ⊆ V −1, we have K1U
−1 ∩K2U

−1 = ∅. So, by the previous

step µU (K1 ∪K2) = µU (K1)+µU (K2). Hence, the map h(f) = 0 for all f ∈ C(V −1). In particular,

h(µ) = 0 so µ(K1 ∪K2) = µ(K1) + µ(K2).

Therefore, µ is a content on compact sets.

Now, µ is only defined on compact sets. In order to extend it to every Borel set, we will first

extend with inner regularity to open sets and then with outer regularity to Borel sets. First we

define the function µ̄ on open sets by:

µ̄(U) = sup{µ(K) | K ∈ K,K ⊆ U}

For any set K ′ which is both open and compact, since µ(K ′) ∈ {µ(K) | K ∈ K,K ⊆ K ′} we have

that µ(K ′) ≤ µ̄(K ′) and since we have µ(K) ≤ µ(K ′) for any K ⊆ K ′ we know µ̄(K ′) ≤ µ(K ′).

Thus, µ(K ′) = µ̄(K ′) so µ̄ agrees with µ when their domains overlap. Furthermore, if U1 ⊆ U2 we

still have µ̄(U1) ≤ µ̄(U2), because {µ(K) | K ∈ K,K ⊆ U1} ⊆ {µ(K) | K ∈ K,K ⊆ U2}.
Now, we define the function ¯̄µ on the power set of G by:

¯̄µ(A) = inf{µ̄(U) | U ∈ τ,A ⊆ U}

For any open set U ′, since µ̄(U ′) ∈ {µ̄(U) | U ∈ τ, U ′ ⊆ U} we have that ¯̄µ(U ′) ≤ µ̄(U ′) and

since we have µ̄(U ′) ≤ µ̄(U) for any U ′ ⊆ U we know µ̄(U ′) ≤ ¯̄µ(U ′). Thus, µ̄(U ′) = ¯̄µ(U ′) so ¯̄µ

agrees with µ̄ on open sets. Similarly, for a compact set K ′, every open set U ⊇ K ′ contains K ′

trivially as a subset so µ̄(U) ≥ µ(K ′). Thus, ¯̄µ(K ′) ≥ µ(K ′). Furthermore, if A1 ⊆ A2 we still have

¯̄µ(A1) ≤ ¯̄µ(A2), because {µ̄(U) | U ∈ τ,A2 ⊆ U} ⊆ {µ̄(U) | U ∈ τ,A1 ⊆ U}.
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Proposition 2.27. ¯̄µ is regular.

Proof. For a Borel set E, since ¯̄µ agrees with µ̄ on open sets:

¯̄µ(E) = inf{µ̄(U) | U ∈ τ, E ⊆ U} = ¯̄µ(A) = inf{ ¯̄µ(U) | U ∈ τ, E ⊆ U}

Hence, we have outer regularity. For an open set U , we have ¯̄µ(U) ≥ sup{ ¯̄µ(K) | K ∈ K,K ⊆ U}
by monotonicity. And, since ¯̄µ agrees with µ̄ on open sets:

¯̄µ(U) = µ̄(U) = sup{µ(K) | K ∈ K,K ⊆ U} ≤ sup{ ¯̄µ(K) | K ∈ K,K ⊆ U}

where the last inequality is by ¯̄µ(K) ≥ µ(K) for a compact set K. Hence, we have inner regularity.

Restricting ¯̄µ to the Borel sets gives us the Haar measure!

Lemma 2.28. If K ∈ K and K ⊆ U1 ∪U2 for open sets U1 and U2, then there are compact sets K1

and K2 such that K1 ⊆ U1, K2 ⊆ U2 and K = K1 ∪K2.

Proof. Let L1 = K \ U1 and L2 = K \ U2. Because G is Hausdorff, K is closed, so L1 and L2 are

both closed. Since they are closed subsets of a compact set L1 and L2 are also compact. Since

K ⊆ U1 ∪ U2, L1 ∩ L2 = ∅. Thus, since G is Hausdorff, L1 and L2 can be separated by disjoint

open sets, V1 and V2. Let K1 = K \ V1 and K2 = K \ V2. Similarly to L1 and L2, we have that K1

and K2 are compact. And for i ∈ {1, 2}, we have:

Ki = K \ Vi ⊆ K \ Li = K \ (K \ Ui) = K ∩ Ui ⊆ Ui

And, K1 ∪K2 = (K \ V1) ∪ (K \ V2) = K \ (V1 ∪ V2) = K since V1 and V2 are disjoint.

Proposition 2.29. ¯̄µ is an outer measure on G.

Proof. Clearly we still have ¯̄µ(∅) = 0 since ¯̄µ agrees with µ on compact sets. And ¯̄µ is non-negative

because supremums and infimums of non-negative numbers are still non-negative.

For countable subadditivity, we will first prove it for open sets. Let {Un}∞n=1 ⊆ τ . For any

compact subset K ⊆
⋃∞

n=1 Un there is some N ∈ N such that K ⊆
⋃N

n=1 Un. By applying the above

lemma inductively, we can find compact sets K1, . . . ,KN such that K =
⋃N

n=1Kn and Kn ⊆ Un

for each 1 ≤ n ≤ N . Then, applying µ(K) ≤ µ(K1) + µ(K2) for K = K1 ∪K2 inductively (since ¯̄µ

agrees with µ on compact sets), we have:

¯̄µ(K) ≤
N∑

n=1

¯̄µ(Kn) ≤
N∑

n=1

¯̄µ(Un) ≤
∞∑

n=1

¯̄µ(Un)

Hence, it is true for open sets, since ¯̄µ agrees with µ̄ on open sets and µ on compact sets:

¯̄µ

( ∞⋃
n=1

Un

)
= sup

{
¯̄µ(K)

∣∣∣∣∣K ⊆
∞⋃

n=1

Un,K ∈ K

}
≤

∞∑
n=1

¯̄µ(Un)
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Now, we prove countable subadditivity for an arbitrary family {An}∞n=1. If
∑∞

n=1
¯̄µ(An) = ∞

then the inequality is trivial, so we can assume
∑∞

n=1
¯̄µ(An) is finite. Fix ε > 0. Since ¯̄µ agrees with

µ̄ on open sets, by the infimum we can find for each An an open set Un such that An ⊆ Un and

¯̄µ(Un) ≤ ¯̄µ(An) + ε/2n. Then, we have:

¯̄µ

( ∞⋃
n=1

An

)
≤ ¯̄µ

( ∞⋃
n=1

Un

)
≤

∞∑
n=1

¯̄µ(Un) ≤
∞∑

n=1

¯̄µ(An) + ε

∞∑
n=1

1

2n
=

∞∑
n=1

¯̄µ(An) + ε

Since ε > 0 was arbitrary, we have:

¯̄µ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

¯̄µ(An)

Therefore, ¯̄µ is an outer measure.

Now define η = ¯̄µ|B(G), the restriction of ¯̄µ to the Borel sets. We now invoke a classical result

of measure theory: Caratheodory’s Criterion. It states that for an outer measure µ∗, the sets E

satisfying µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) for all A ⊆ G form a sigma-algebra. Such a set E is

called Caratheodory measurable. In general, this can be used to extract a measure from any outer

measure. But, we specifically want a measure on the Borel sigma-algebra. So, all we need to do is

check that each Borel set is Caratheodory measurable.

Proposition 2.30. η : B(G) → R is a measure.

Proof. To show that each Borel set is Caratheodory measurable, it suffices to show that each open

set is Caratheodory measurable because any sigma-algebra containing a family of set will contain

the sigma-algebra it generates. So, let U ⊆ G be open and let A ⊆ G. If ¯̄µ(A) = ∞ then trivially

¯̄µ(A) ≥ ¯̄µ(A ∩ U) + ¯̄µ(A ∩ U c). If ¯̄µ(A) < ∞, fix ε > 0. Since ¯̄µ(A) = inf{µ̄(U) | U ∈ τ,A ⊆ U},
we can find an open set V such that A ⊆ V and ¯̄µ(V ) ≤ ¯̄µ(A) + ε. And since on open sets

¯̄µ(U) is the supremum of {µ(K) | K ∈ K,K ⊆ U} we can find compact K ⊆ V ∩ U such that

¯̄µ(V ∩U)− ε ≤ ¯̄µ(K). Similarly, we can find compact L ⊆ V ∩Kc such that ¯̄µ(V ∩Kc)− ε ≤ ¯̄µ(L).

Since K ⊆ U we have V ∩ U c ⊆ V ∩Kc, so:

¯̄µ(V ∩ U c)− ε ≤ ¯̄µ(V ∩Kc)− ε ≤ ¯̄µ(L)

Now, we also have A ∩ U ⊆ V ∩ A and A ∩ U c ⊆ V ∩ U c and ¯̄µ retains the property of being a

content on compact sets so:

¯̄µ(A ∩ U) + ¯̄µ(A ∩ U c)− 2ε ≤ ¯̄µ(V ∩ U)− ε+ ¯̄µ(V ∩ U c)− ε

≤ ¯̄µ(K) + ¯̄µ(L) Definitions of K and L

= ¯̄µ(K ∪ L) Content on compact sets

≤ ¯̄µ((V ∩ U) ∪ (V ∩Kc)) Definitions of K and L

≤ ¯̄µ(V ) Since (V ∩ U) ∪ (V ∩Kc) ⊆ V

≤ ¯̄µ(A) + ε Definition of V

12



Hence, ¯̄µ(A ∩ U) + ¯̄µ(A ∩ U c)− 3ε ≤ ¯̄µ(A) and since ε was arbitrary, we have:

¯̄µ(A ∩ U) + ¯̄µ(A ∩ U c) ≤ ¯̄µ(A)

Therefore, U is Caratheodory measurable and η restricted to the Borel sets is a measure.

Now, we finally come to the easy part. After all of this setup, we can prove that η is indeed a

Haar measure.

Proposition 2.31. η is non-trivial.

Proof. µU (K0) = 1 for all U and the map f 7→ f(K0) is continuous as X → R so µ(K0) = 1 and

since η agrees with µ on compact sets, η(K0) = 1. Therefore, η is non-trivial.

Theorem 2.32. η : B(G) → R is a Haar measure on G.

Proof. Since µ ∈ X and η agrees with µ on compact sets, η is finite on compact sets.

Since ¯̄µ is regular and η is a restriction of ¯̄µ, it is also regular.

For translation-invariance, it suffices to show that η is translation invariant on compact sets,

because the supremums and infimums of equal sets are also equal. Fix g ∈ G and K ∈ K. Trans-

lations by x1, . . . , xn cover K if and only if translations by gx1, . . . , gxn cover gK so (K : U) =

(gK : U) for any U ∈ U . Hence, µU (K) = µU (gK). Thus, the continuous map X → R given by

f 7→ f(K)− f(gK) is 0 on every C(U). So, µ(K) = µ(gK). Since η agrees with µ on compact sets,

it follows that η(K) = η(gK). Hence, η is translation-invariant.

Therefore, η is a Haar measure.
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