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1 “Abstract Nonsense”

We begin by making some definitions and stating some general results that will become useful later on. In

all of the following, let V,W be representations of a group G over a field K

Definition 1.1. [V,W ]K is the K[G]-module of K-linear maps f : V →W with (g ·f)(v) := g ·f(g−1 ·v)∀v ∈
V ∀g ∈ G.

Definition 1.2. V ⊗W is the K[G]-module V ⊗K W with G acting diagonally: g · (v ⊗ w) := g · v ⊗ g · w.
(Note that iterating this to define products of any finite number of K[G]-modules can be easily seen to be

equivalent to the diagonal action of G on the tensor product of all of them.)

Definition 1.3. V G := {v ∈ V : ∀g ∈ G, g · v = v} as a K-vector space.

Definition 1.4. Let X be a K-vector space. Then Xtriv := X, with the trivial action of G: ∀g ∈ G, g ·(−) :=

idX . When no action of G on X has been defined, Xtriv may also just be denoted by X.

Definition 1.5. V ∗ := [V,Ktriv]K

Remark 1.6. Recall the Categories K-Vect, whose objects are vector spaces with morphisms being linear

maps between them, and K[G]-Mod, whose objects are K[G]-modules with module homomorphisms (G-

equivariant maps) between them. In this way, many of the constructions defined above become functors.

[−,−]K : Cop × C → C, (− ⊗ −) : C × C → C, (−)G : C → D, and (−)triv : D → C are all functors, where

C is K[G]-Mod, and D is K-Vect. Additionally, essentially by definition, HomK[G](−,−) := HomC(−,−) =

([−,−]K)
G as vector spaces.

Lemma 1.7. (−)G and (−)triv are right and left adjoint functors respectively

Proof. The correspondence in one direction is given by sending a G-equivariant map Atriv → B to the map

between the underlying vector spaces, which can be seen to have image lying in BG. In the other direction, a

map A→ BG gets sent to Atriv → (BG)triv using the fact the (−)triv is a functor, and then this is followed

by the inclusion (BG)triv ↪→ B, (Since (BG)triv is a subrepresentation of B). The rest of the facts needed

for this claim can be easily and methodically verified.

We find that for the internal-hom and tensor product, we get something stronger than just an adjunction.
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Proposition 1.8. There is a natural isomorphism Φ : [−1 ⊗K −2,−3]K → [−1, [−2,−3]K]K where both sides

are considered as functors from Cop × Cop × C → C

Proof. Let A,B,C be K-vector spaces. We define θ : f(a, b) = c→ θ[f ](a)(b) = c. It is then trivial to check

that this is well defined, invertible, linear in f, a, b, and respects precomposition in a, b, and postcompostion

in f/c (in the senses used to define the way both functors act on morphisms) , and therefore defines a natural

isomorphism of functors from [−1 ⊗K −2,−3]K → [−1, [−2,−3]K]K : Dop × Dop × D → D. From there, one

can check that when all three arguments A,B,C of the functors are K[G]-modules, then θ turns out be a

K[G]-module isomorphism where the action on both sides can be derived from the definitions of [, ]K,⊗K.

(a, b, c→ a · g−1, b · g−1, g · c).

Proposition 1.9. Let V,W be K[G]-modules, and let ϕ ∈ [V,W ]GK be a K[G]-module homomorphism such

that im(ϕ) ∼=W1 ×W2 for nonzero K[G]-submodules W1,W2 of im(ϕ). Then dim([V,W ]GK ) ≥ 2.

Proof. Let p1 : W1 × W2 → W1 and p2 : W1 × W2 → W2 be the projection maps. Then we have

dim([V,W ]GK ) ≥ dim([V,W1 × W2]
G
K ) = dim([V,W1]

G
K × [V,W2]

G
K ) = dim([V,W1]

G
K ) + dim([V,W2]

G
K ) ≥

dim((p1 ◦ ϕ)) + dim((p2 ◦ ϕ)) = 2. Where the first equality holds because [V,−]K, (−)G are both right

adjoint functors, × is a categorical product (which is a limit), and right adjoint functors preserve limits.

Corollary 1.10. If K has characteristic 0 and G is a finite group, then if dim([V,W ]GK ) = 1, then the image

of any nonzero K[G]-module homomorphism ϕ : V →W is irreducible.

2 Construction of irreducible representations (irreps) of Sn

Recall that irreps of Sn can be indexed by partitions λ of n, which are defined to be weakly decreasing

sequences of positive integers λ1 ≥ λ2 ≥ · · · ≥ λl > 0 with
∑n
i=1 λi = n.

For demonstration purposes, we will take n = 5, take λ = (3, 2), the young diagram of λ is shown below.

We will construct the irreps of Sn from the partitions λ of n by defining two Sn representations H(λ) and

E(λ), and a matrix giving a map ψλ : E(λ) → H(λ). The irreducible representation contructed will then be

imψλ
.

Define H(λ) such that it has a basis {vw} where w’s are strings with λ1 1’s, λ2 2’s, etc. In our example,

H(3, 2) = ⟨v11122, v11212, v11221, v12112, v12121, v12211, v21112, v21121, v21211, v22111⟩.

S5 acts by sending each basis vector to another basis vector, permuting entries of the string. For example,

(13) acts on v21112 on the left by swapping the values of the 1st and 3rd places, resulting in v11212. Note

that H(λ) = C[Sn]⊗C[sλ] C. And the regular map is H(1, 1, 1, 1, 1) with basis {v12345, v21345, . . . }.
Similarly, define E(λ) such that it has a basis {uw} where w’s are strings with as many 1’s as boxes in

the first column, as many 2’s as boxes in the second column, and so on. Here Sn acts by sending each basis

vector to ± another basis vector, permuting entries and multiplying by the sgn(perm). For example,

E(3, 2) = ⟨v11223, v11232, v11322, v12123⟩.

(13) · v11223 = −v21123, negative since (13) is odd.

(123) · v11223 = v21123, positive since (123) is even.
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Remark 2.1.

E(λ) = Csgn ⊗C H(λt),where λt is the transpose of λ, and ⊗C is defined as in section 1

Remark 2.2. For all partitions λ, H(λ)∗ ∼= H(λ),C∗
sgn

∼= Csgn defined in section 1.

Define a matrix Mλ : E(λ) → H(λ) (i.e. columns indexed by words corresponding to basis elements of

H(λt) and rows of indexed by words corresponding to basis elements of H(λ).

11223 11232 11322 12123

11122 0 0 0 0

11212 0 0 0 0

11221 0 0 0 1

...

.

Here, the entry in the column with word w and row with word x is

0, if there are identical columns in w
x .

±1, o.w. (all columns are distinct).

Example 2.3. 11223
11122 has entry 0 but 12312

11122 does not.

For ±1, we determined the sgn from the permutation giving w
x to 12312

11122 .

Remark 2.4. For any two partitions λt,µ of n, the action of Sn on the basis elements of H(λt) ⊗C H(µ)

is identical to the action of Sn on the set of word pairs w
x by permuting the columns, where w and x are

words corresponding to basis elements of H(λt) and H(µ) respectively, and the isomorphism is given by
w
x → vw ⊗C vx.

Proposition 2.5. Let w and x be words corresponding to basis vectors of H(λt) and H(λ) respectively. If

the word pair w
x has distinct columns (no column appears more than once), then all such word pairs have

the same set of columns as w
x . Or in a fancier language, when Sn acts on w

x by simultaneously permuting w

and x, there is exactly one free orbit of Sn. (Free means the stabilizer = {identity})

Proof. We have to show for any two of these word pairs both with all columns distinct, w1

x1
, w2

x2
, have the

same set of columns. Since the set of columns of both word pairs is all that is important for this claim,

by permuting the columns, we can reduce to the case where the entries of x1, x2 are weakly increasing

and therefore both equal to the unique x with weakly increasing entries. If λ is the empty partition, our

claim holds vacuously, since both column sets are empty. We now proceed by induction on the length

(number of parts) of λ. We have shown the base case holds vacuously (length 0), so it suffices to show any

counterexample to this claim could be used to generate another counterexample of strictly smaller length.

Observe that the first λ1 entries of w1 and w2 must be distinct, since otherwise, two identical entries of w

would lie above 1’s from x, resulting in two identical columns of wx . Furthermore, since the w’s have λ′1 1s,

and so on, and the length of λ′ is exactly λ1, we see that the first λ1 entries of both w1 and w2 must be

precisely the numbers 1, . . . , λ1. So for w1

x and w2

x to have distinct column sets, the remaining column sets

(which all have corresponding x entries at least 2), must be distinct. From this, we define x′ with entries

x′j = xλ1+j − 1, and w′ with entries w′
j = wj+λ1 for w = w1, w2 and for 1 ≤ j ≤ (n − λ1). We then see

that if λ>1 := (λ2 . . . λl) (which has length l − 1 < l), then x′ is a word corresponding to λ>1, and w
′
1, w

′
2

are words corresponding to λ′>1 with distinct sets of columns, which would be a counterexample of strictly

smaller length. This concludes the proof (by contradiction).
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Proposition 2.6. Let w and x be words corresponding to basis elements of H(λt) and H(µ) respectively

and let w
x the corresponding word pair. Then unless λ dominates µ, the word pair has a repeated column.

Proof. Suppose there exist w, x, such that λ doesn’t dominate µ but wx has distinct columns. Without loss of

generality, we can assume x is weakly increasing. Then for all integers 1 ≤ k ≤ λt1, we know that the number

of i’s appearing in the first µ1 + . . . µk entries of w is at most min(λti, k) i’s for every 1 ≤ i ≤ λ1 = l(λt).

Summing up both sides, we see that ∀1 ≤ k ≤ λt1, min(λt1, k)+ . . .min(λtλ1
, k) ≤ µ1+ . . . µk. Now, looking at

the young diagram of λt, it becomes clear that the left hand side is equal to λ1+ ...+λk ∀1 ≤ k ≤ λt1 = l(λ).

But then, the inequality between the left and right hand sides is exactly the statement that λ dominates µ,

which contradicts our assumption that the columns of wx were distinct.

Corollary 2.7. From the last two propositions and the remark immediately preceding them, it follows that

for any two partitions λ, µ of n, if λ doesn’t dominate µ, then every basis element of H(λt)⊗CH(µ) is fixed

by some transposition t ∈ Sn, and that if λ = µ, any basis vector not contained in the unique free orbit of

the action of Sn on the basis vectors of H(λt)⊗C H(λ) is fixed by some transposition t ∈ Sn.

Lemma 2.8. Let λ, µ be partitions of n. Then [E(λ), H(µ)]C ∼= [H(λt)⊗C H(µ),Csgn]C as C[Sn]-modules.

In particular, this will still hold after taking Sn invariants on both sides and so defines an isomorphism of

vector spaces of Sn-equivariant maps.

Proof. [E(λ), H(µ)]C ∼= [H(λt)⊗CCsgn, H(µ)]C ∼= [H(λt)⊗CCsgn, H(µ)∗∗]C = [H(λt)⊗CCsgn, [H(µ)∗,C]C]C ∼=
[H(λt)⊗CCsgn⊗CH(µ)∗,C]C ∼= [H(λt)⊗CH(µ)∗⊗CCsgn,C]C ∼= [H(λt)⊗CH(µ)∗, [Csgn,C]C]C = [H(λt)⊗C

H(µ)∗,C∗
sgn]C

∼= [H(λt)⊗C H(µ),Csgn]C.

Remark 2.9. One can verify that chasing a linear map f : H(λt) ⊗C H(µ) → Csgn back through the

isomorphisms gives the map from E(λ) → H(µ) that, when written in matrix form with rows and columns

indexed by the bases of H(µ) and E(λ) respectively (or equivalently the words corresponding to the basis

vectors of H(µ) and H(λt) respectively), has x,w entry equal to f(vw ⊗ vx). Since we know that this is

actually an isomorphism of C[Sn]-modules, if f is an Sn-equivariant map, so is the corresponding matrix.

Proposition 2.10. dim([E(λ), H(µ)]) = dim([H(λt) ⊗C H(µ),Csgn]Sn

C ) = nf , where nf is the number of

free orbits of the Sn on the set of basis vectors of H(λt) ⊗C H(µ). In particular, the dimension is 0 unless

λ dominates µ, and it’s 1 if λ = µ.

Proof. One can see that any Sn-equivariant map f : H(λt) ⊗C H(µ) → Csgn is uniquely determined by

its values on each vw ⊗C vx. Since the action of Sn permutes this basis of H(λt) ⊗C H(µ), and f is Sn-

equivariant, it is actually completely determined by its values at an element of each orbit. Furthermore,

if any element vw ⊗ vx of an orbit has nontrivial stabilizer, the corresponding word pair must have at

least one repeated column, and so must be fixed by a transposition t ∈ Sn. From this it follows that

f(vw ⊗ vx) = f(t · (vw ⊗ vx)) = −f(vw ⊗ vx) and therefore f(vw ⊗ vx) = 0. So f is completely determined

by its values on a single basis vector from each free orbit. One can also see without much difficulty that any

sequence of values x1 . . . xnf
∈ C can arise in this way, where nf is the number of free orbits of the action of Sn

on the basis vectors vw⊗vx of H(λt)⊗CH(µ). From this, we see that dim([H(λt)⊗CH(µ),Csgn]Sn

C ) = nf

Remark 2.11. Let vx0
⊗C vw0

be the unique basis vector of H(λ)⊗CH(λt) such that w
x is strictly increasing

with respect to the lexicographic order on the columns ( iwix <lex
jw
jx

iff ix < jx or ix = jx, iw < jw).
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From the above proof one sees that every Sn equivariant map f : H(λt) ⊗C H(λ) → Csgn is of the form

f(vw ⊗ vx) =

0, if there are identical columns in w
x .

sgn(π)z, if vw ⊗C vx = π · (vw0
⊗C vx0

).
for some z ∈ C. Then, from the remark directly

preceding that proof, we find that every ψλ ∈ [E(λ), H(λ)]Sn

C is of the form zMλ for some z ∈ C. So

Mλ : E(λ) → H(λ) is the (unique up to scaling) nonzero Sn-equivariant map from E(λ) to H(λ).

Proposition 2.12. The image of any nonzero Sn-equivariant map from E(λ) → H(λ) is isomorphic to an

irreducible representation Vλ depending only on λ, and furthermore, Vλ ∼= Vµ if and only if λ = µ.

Proof. The first part of this claim follows directly from corollary 1.10. For the second part of this claim,

suppose there is an isomorphism ϕ : Vλ → Vµ. Then we have nonzero Sn-equivariant maps ϕ ◦ Mλ ∈
[E(λ), H(µ)]Sn

C , ϕ−1 ◦Mµ ∈ [E(µ), H(λ)]Sn

C , and so both [E(λ), H(µ)]Sn

C , [E(µ), H(λ)]Sn

C have dimension at

least 1. But as we have shown previously, this could only be true if λ and µ dominate eachother, which

implies that λ = µ.

This gives a construction of irreducible representations Vλ of Sn for each partition λ of n which produces

distinct irreducible representations for distinct partitions. Furthermore, from the character theory of finite

groups, we see that since the nonisomorphic irreducible representations of Sn are in bijection with conjugacy

classes of Sn, which in turn are in bijection with the partitions λ of n, and we were able to construct

an injection from the set of partitions to the set of nonisomorphic irreducible representations of Sn, this

construction must actually produce all nonisomorphic representations of Sn.

Remark 2.13. Although this is not important for the proof, one can slightly sharpen the proofs of propo-

sitions 2.6 and 2.7 to show that in general, the number of free orbits nf (as defined in proposition 2.10) is

equal to the number of young tableaux with shape µ and content λt with strictly increasing rows.

3 Basis of irreducible representations (irrep) of Sn

We know that the images of the basis vectors vw of E(λ) by the map Mλ span image. However, their images

will not, in general, be linearly independent. However, it is definitely concievable that some subcollections

of the basis vectors of E(λ) could have images by Mλ that do form a basis. So, one can ask: How many

such subcollections of the basis vectors of E(λ) are there? This question is more combinatorial in nature

than the more representation theoretic questions we started out with. To develop a more general framework

for these kinds of questions, we are led to the definition of a matroid. At an intuitive level, these are spaces

with a notion of linear dependence of sets of vectors.

There are many equivalent definitions of (finite) matroids. Here is one definition that fits the heuristics

above the best.

Definition 3.1. A matroid
¯

is a pair of sets (E ,B), where E is a finite set and B is a collection of subsets of

E , with following properties:

(B1) B is not empty.

(B2) (basis exchange property) For A,B ∈ B and a ∈ A \B, ∃b ∈ B \A such that A \ {a} ∪ {b} ∈ B

Remark 3.2. Suppose that for A,B ∈ B, A ⊊ B. Then, A \B is empty. But B \A is not empty. Thus, it

follows from the basis exchange property that no member of B can be properly contained in another.
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Figure 1: The Fano Plane

Remark 3.3. It is true that if E is a finite set of an vectorspace V , we can define a matroid structure on E
by setting B to be the set of maximal linearly independent set in E , these are called vector matroids. An

important example is the Fano matroid. It can be seen as a vector matroid which consists of 7 points in a

3 dimensional vector space over the finite field Z2.

Remark 3.4. Another type of matroids, that is relevant to our question, is the graphic matroid. It is

stated as follows. Given a graph (multigraph) G = (E,V), let E := E, and the bases in B are the spanning

forests of G, i.e. spanning edges that do not contain a cycle.

Circling back to the question of how many of these bases there are for Vλ, the answer is not known in

general. However, there are nice answers in some situations. As it relates to our problem, the columns of

Mλ form a matroid. One thing that can aid our search for a way of counting bases would be to find a

”matroid isomorphism” between the matroid formed by the columns of Mλ and some other matroid whose

combinatorial properties are better understood. In particular, one of the cases in which there is a nice answer

is when λ = (n − 1, 1). In this situation, one can find an isomorphism of matroids between the columns of

M(n−1,1), whose maximal independent sets are the bases we are trying to count, and edges of graphs on n

labeled vertices, whose maximal independent sets are spanning trees. Therefore, the number of bases in this

case is nn−2. In this case one can check that each column of Mλ has n entries total, but only two nonzero

entries with opposite signs and that for any such vector v of this form, either v is a column Mλ or −v is a

column of Mλ. In the isomorphism, the column whose i-th and j-th entries are nonzero corresponds to the

edge between vertex i and vertex j. This map from the set of columns of Mλ to the set of (unordered) pairs

of vertices of is invertible and sends linearly dependent sets of column vectors to (edge sets of) subgraphs

containing cycles in the labeled graph on n vertices. This is enough to show that it is an isomorphism, since

bases of a matroid can be characterized as maximal linearly independent sets of the matroid.
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