06/02/22 Notes

Dylan Chiu and Zhuo Zhang

June 2, 2022

- Next meeting time: 10am on Friday at Noyes 165

1 Semidirect Product

Definition 1.1 (Inner Semidirect Product). Given a group G with identity element e, a subgroup H, and a normal subgroup $N \unlhd G$, we say that G is the semidirect product of N and H and write $G=N \rtimes H$ if $G=N H$ (product of two subgroups) and $N \cap H=\{e\}$.

Proposition 1.2. The following statements are equivalent:
(a) $G=N \rtimes H$.
(b) For every $g \in G$, there are unique $n \in N$ and $h \in H$ such that $g=n h$.
(c) For every $g \in G$, there are unique $h \in H$ and $n \in N$ such that $g=h n$.
(d) The composition $\pi \circ i$ of the natural embedding $i: H \rightarrow G$ with the natural projection $\pi: G \rightarrow G / N$ is an isomorphism between H and the quotient group G / N.
(e) There exists a homomorphism $G \rightarrow H$ that is the identity on H and whose kernel is N. In other words, there is a split exact sequence of groups:

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1
$$

Proof. (a) implies (b): The existence is obvious. Suppose $g=n_{1} h_{1}=n_{2} h_{2}$, then $h_{1}^{-1} n_{1} h_{1}=h_{1}^{-1} n_{2} h_{2}$, so $h_{1}^{-1} n_{1} h_{1}=\left(h_{1}^{-1} n_{2} h_{1}\right)\left(h_{1}^{-1} h_{2}\right)$. Therefore, $\left(h_{1}^{-1} n_{1} h_{1}\right)\left(h_{1}^{-1} n_{2} h_{1}\right)^{-1}=h_{1}^{-1} h_{2} \in N \cap H=\{e\}$, so $h_{1}=h_{2}$, and the result follows.
(b) implies (c): Let $g \in G$ be given, then $g^{-1}=n h$ for some $n \in N$ and $h \in H$. Thus, $g=h^{-1} n^{-1}$ for some unique $n \in N$ and $h \in H$. Uniqueness follows by way of contradiction.
(c) implies (d): $\pi \circ i$ is clearly a homomorphism. Because $h=h e$ trivially, this must be the unique decomposition of h. Since $\pi \circ i(h)=\pi(h)=h N$, if $\pi\left(h_{1}\right)=\pi\left(h_{2}\right)$, then $h_{1} N=h_{2} N$, but since $h=h e$ is the unique decomposition, it follows that $h_{1}=h_{2}$. For any $g N \in G / N$, since $g=h n$ for some unique n and h, it follows that $g N=h N$, and so $\pi \circ i(h)=g N$. Thus $\pi \circ i$ is an isomorphism.
(d) implies (e): Take the natural projection described in the previous statement.
(e) implies (a): Denote by φ the homomorphism from G to H with the desired property. Let $g \in G$ be given, then $\varphi(g)=h=\varphi(h)$ for some $h \in H$. Thus, $g h^{-1} \in \operatorname{ker}(\varphi)=N$, so $g=n h$ for some $n \in N$ and
$h \in H$, and so $G=N H$. Consider any $a \in N \cap H$, then $\varphi(a)=a$ because $\left.\varphi\right|_{H}=\operatorname{id}_{H}$ but $\varphi(a)=e$ because $a \in \operatorname{ker}(\varphi)$. Thus, $a=e$ and $N \cap H=\{e\}$.

Definition 1.3 (Outer Semidirect Product). Let us now consider the outer semidirect product. Given any two groups N and H and a group homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$, we can construct a new group $N \rtimes_{\varphi} H$, called the outer semidirect product of N and H with respect to φ, defined as follows:

- The underlying set is the Cartesian product $N \times H$.
- The group operation \star is determined by the homomorphism $\varphi:\left(N \rtimes_{\varphi} H\right) \times\left(N \rtimes_{\varphi} H\right) \rightarrow N \rtimes_{\varphi} H$:

$$
\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)=\left(n_{1} \varphi_{h_{1}}\left(n_{2}\right), h_{1} h_{2}\right)
$$

for n_{1}, n_{2} in N and h_{1}, h_{2} in H.
This defines a group in which the identity element is $\left(e_{N}, e_{H}\right)$ and the inverse of the element (n, h) is $\left(\varphi_{h^{-1}}\left(n^{-1}\right), h^{-1}\right)$. Note how this connects to the inner semidirect product: $\left\{\left(e_{N}, h\right) \mid h \in H\right\}$ is a subgroup of $N \rtimes_{\varphi} H$ and is isomorphic to $H ;\left\{\left(n, e_{H}\right) \mid n \in N\right\}$ is a normal subgroup of $N \rtimes_{\varphi} H$ and is isomorphic to N.

Proposition 1.4. Suppose N and H are subgroups of G such that the decomposition $g=n h$ exists and is unique for all $g \in G$. Let $\varphi: H \rightarrow \operatorname{Aut}(N)$ be defined as $\varphi_{h}(n)=h n h^{-1}$. Then G is isomorphic to the outer semidirect product $N \rtimes_{\varphi} H$.

Proof. The isomorphism is given by $\lambda: G \rightarrow N \rtimes_{\varphi} H$ such that $\lambda(g)=\lambda(n h)=(n, h)$. This is well-defined because the decomposition exists and is unique. If $a=n_{1} h_{1}$ and $b=n_{2} h_{2}$, then

$$
\begin{aligned}
\lambda(a b) & =\lambda\left(n_{1} h_{1} n_{2} h_{2}\right) \\
& =\lambda\left(n_{1} \varphi_{h_{1}}\left(n_{2}\right) h_{1} h_{2}\right) \\
& =\left(n_{1} \varphi_{h_{1}}\left(n_{2}\right), h_{1} h_{2}\right) \\
& =\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right) \\
& =\lambda(a) \star \lambda(b),
\end{aligned}
$$

so λ is a homomorphism and is obviously a bijection. Thus, $G \cong N \rtimes_{\varphi} H$.

2 Generality of Tensor Product

Definition 2.1. Let V be a vector space over the field \mathbb{K}. The tensor of type (m, n) is the vector space of the form $V^{\otimes m} \otimes\left(V^{*}\right)^{\otimes n}$.

One easily sees from this definition that the following types of tensors can be identified with some common objects/maps in algebra:

- Type $(1,0)$: vector space.
- Type $(0,1)$: covectors, also known as the dual space.
- Type $(0,2)$: bilinear forms on V. This is because $V^{*} \otimes V^{*} \cong(V \otimes V)^{*}$.
- Type $(1,1)$: linear operators on V.

3 Lie Algebras

Definition 3.1 (Algebra). An algebra \mathcal{A} is a vector space equipped with a bilinear product from $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
Definition 3.2 (Lie Algebra). The bilinear product here is this Lie bracket operator [,--] which satisfies the following properties

1. bilinearity. $[a x+b y, z]=a[x, z]+b[y, z]$ and $[x, a y+b z]=a[x, y]+b[x, z]$
2. Alternativity. $[a, a]=0$
3. Jacobi Identity. $[[a, b], c]+[[b, c], a]+[[c, a], b]=0$

Using 1 and 2 one can show anticommutivity. $0=[x+y, x+y]=[x, y]+[y, x]$.
Example 3.3. The trivial Lie bracket: $[-,-]=0$.
Example 3.4. For an associative algebra \mathcal{A} with bilinear product $(-,-)$, define $[a, b]=(a, b)-(b, a)$. Then $[a, b]$ is bilinear and alternativity follows from the Jacobi Identity.

$$
[[a, b], c]+[[b, c], a]+[[c, a], b]=([a, b], c)-(c,[a, b])+([b, c], a)-(a,[b, c])+([c, a], b)-(b,[c, a])=0 .
$$

\mathcal{A} is called an enveloping algebra of $(\mathcal{A},[-,-])$. If we take \mathcal{A} to be the associative algebra of endomorphisms of a \mathbb{K}-vector space V with dimension n. i.e $n \times n$ matrices with product defined as matrix multiplication, then the above example is $\mathfrak{g l}_{n}(\mathbb{K})$ or $\mathfrak{g l}(V)$.

3.1 Derivations

Definition 3.5 (Derivation). A derivation of an algebra \mathcal{A} is an endomorphism $D: \mathcal{A} \rightarrow \mathcal{A}$ that satisfies the Leibniz rule

$$
D(a \cdot b)=D(a) \cdot b+a \cdot D(b)
$$

where \cdot is the bilinear product on \mathcal{A}. In the case of Lie Algebra \mathcal{A} :

$$
D([a, b])=[D(a), b]+[a, D(b)]
$$

Example 3.6. For a Lie Algebra \mathcal{A}, fix some $x \in \mathcal{A}$. Then the adjoint mapping $\operatorname{ad}_{x}(y)=[x, y]$ is a derivation. The Leibniz rule follows from the Jacobi Identity.

$$
\begin{aligned}
\operatorname{ad}_{x}([a, b]) & =[x,[a, b]] \\
& =-[[a, b], x] \\
& =[[b, x], a]+[[x, a], b] \\
& =[a,[x, b]]+[[x, a], b] \\
& =\left[a, \operatorname{ad}_{x}(b)\right]+\left[\operatorname{ad}_{x}(a), b\right]
\end{aligned}
$$

Example 3.7. Let \mathcal{A} be an algebra with bilinear product ".". The set of all derivations $\operatorname{Der}(\mathcal{A})$ is a Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{K})$, or $\operatorname{End}(\mathcal{A})$, with the commutator as the Lie bracket. It suffices to show that the
commutator of two derivations is a derivation. Suppose $\varphi, \rho \in \operatorname{Der}(\mathcal{A})$, then

$$
\begin{aligned}
(\varphi \rho-\rho \varphi)(v \cdot w)= & \varphi \rho(v \cdot w)-\rho \varphi(v \cdot w) \\
= & \varphi(\rho(v) \cdot w+v \cdot \rho(w))-\rho(\varphi(v) \cdot w+v \cdot \varphi(w)) \\
= & \varphi \rho(v) \cdot w+\underline{\rho(v)-\varphi(w)+\underline{\varphi(v)}-\rho(w)+v \cdot \varphi \rho(w)} \\
& -\rho \varphi(v) \cdot w-\underline{\varphi}(v)-\rho(w)-\underline{\rho(v)-\varphi(w)-v \cdot \rho \varphi(w)} \\
= & (\varphi \rho-\rho \varphi)(v) \cdot w-v \cdot(\varphi \rho-\rho \varphi)(w)
\end{aligned}
$$

Hence, $\varphi \rho-\rho \varphi \in \operatorname{Der}(\mathcal{A})$, so $\operatorname{Der}(\mathcal{A})$ is a Lie subalgebra of $\operatorname{End}(\mathcal{A})$.

4 The Tensor Algebra

Definition 4.1. For a vector space V, its k th tensor power is defined to be $T^{k} V=V^{\otimes k}$, and its tensor algebra is defined as $T(V)=\bigoplus_{n \geq 0} T^{k} V$. The multiplication in $T(V)$ is defined as the "concatenation" of tensor products and then extended linearly to other elements. For example,

$$
\left(e_{2} \otimes e_{5}\right)\left(e_{1} \otimes e_{3} \otimes e_{4}\right)=e_{2} \otimes e_{5} \otimes e_{1} \otimes e_{3} \otimes e_{4} .
$$

Therefore, $T(V)$ is has a graded algebra structure.
Proposition 4.2. The tensor algebra satisfies the universal property. Let V be a vector space over field \mathbb{K}, let i be the natural inclusion map from V to $T(V)$, and let \mathcal{A} be an associative \mathbb{K}-algebra. If there exists a linear map $f: V \rightarrow \mathcal{A}$, then there exists a unique algebra homomorphism $g: T(V) \rightarrow \mathcal{A}$ such that the following diagram commutes, i.e. $f=g \circ i$.

Proof. Define g by the following:

$$
g\left(v_{1} \otimes v_{2} \otimes \ldots \otimes v_{k}\right)=f\left(v_{1}\right) \cdot f\left(v_{2}\right) \cdot \ldots \cdot f\left(v_{k}\right),
$$

extended linearly to all elements in $T(V)$. The dot on the right hand side is the bilinear product in \mathcal{A}, and we may drop the parenthesis because \mathcal{A} is associative. Note that g is linear by definition. g is also obviously an algebra homomorphism. Also note that $f=g \circ i$ because $g \circ i(v)=g(v)=f(v)$ for all $v \in V$. Finally, g is unique because g and f must agree on vectors in V, and because g is an algebra homomorphism,

$$
g\left(v_{1} \otimes v_{2}\right)=g\left(v_{1} \cdot v_{2}\right)=g\left(v_{1}\right) g\left(v_{2}\right)=f\left(v_{1}\right) f\left(v_{2}\right) .
$$

The same argument can be applied inductively and the uniqueness of g follows.
In categorical terms, the tensor algebra is a functor from the category of vector spaces to the category of \mathbb{K}-algebras.

Definition 4.3 (Two Sided Ideal). Given a algebra \mathcal{A}, a subalgebra I is an ideal of \mathcal{A} if for all $a \in \mathcal{A}$ and $x \in I$ the products $a \cdot x, x \cdot a \in I$

Definition 4.4 (Symmetric Algebra). Let V be a vector space and $T(V)$ the associated tensor algebra. Then we can define an ideal I generated by elements of the form $x \otimes y-y \otimes x$. The symmetric algebra of V is defined as $\operatorname{Sym}(V)=T(V) / I$. The k th symmetric power of V is the subspace of $S(V)$ spanned by k-fold symmetric product of vectors in V.

Because we quotient out vectors of the form $x \otimes y-y \otimes x$, it follows that $S(V)$ is isomorphic $\mathbb{K}[B]$, where B is considered as indeterminate. This provides a coordinate-free way polynomial ring over V.

