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1 Semidirect Product

Definition 1.1 (Inner Semidirect Product). Given a group G with identity element e, a subgroup H, and

a normal subgroup N ⊴ G, we say that G is the semidirect product of N and H and write G = N ⋊H if

G = NH (product of two subgroups) and N ∩H = {e}.

Proposition 1.2. The following statements are equivalent:

(a) G = N ⋊H.

(b) For every g ∈ G, there are unique n ∈ N and h ∈ H such that g = nh.

(c) For every g ∈ G, there are unique h ∈ H and n ∈ N such that g = hn.

(d) The composition π ◦ i of the natural embedding i : H → G with the natural projection π : G → G/N is

an isomorphism between H and the quotient group G/N .

(e) There exists a homomorphism G → H that is the identity on H and whose kernel is N . In other words,

there is a split exact sequence of groups:

1 → N → G → H → 1

Proof. (a) implies (b): The existence is obvious. Suppose g = n1h1 = n2h2, then h−1
1 n1h1 = h−1

1 n2h2, so

h−1
1 n1h1 =

(
h−1
1 n2h1

) (
h−1
1 h2

)
. Therefore,

(
h−1
1 n1h1

) (
h−1
1 n2h1

)−1
= h−1

1 h2 ∈ N ∩ H = {e}, so h1 = h2,

and the result follows.

(b) implies (c): Let g ∈ G be given, then g−1 = nh for some n ∈ N and h ∈ H. Thus, g = h−1n−1 for

some unique n ∈ N and h ∈ H. Uniqueness follows by way of contradiction.

(c) implies (d): π ◦ i is clearly a homomorphism. Because h = he trivially, this must be the unique

decomposition of h. Since π ◦ i(h) = π(h) = hN , if π(h1) = π(h2), then h1N = h2N , but since h = he is the

unique decomposition, it follows that h1 = h2. For any gN ∈ G/N , since g = hn for some unique n and h,

it follows that gN = hN , and so π ◦ i(h) = gN . Thus π ◦ i is an isomorphism.

(d) implies (e): Take the natural projection described in the previous statement.

(e) implies (a): Denote by φ the homomorphism from G to H with the desired property. Let g ∈ G be

given, then φ(g) = h = φ(h) for some h ∈ H. Thus, gh−1 ∈ ker(φ) = N , so g = nh for some n ∈ N and

1



h ∈ H, and so G = NH. Consider any a ∈ N ∩H, then φ(a) = a because φ|H = idH but φ(a) = e because

a ∈ ker(φ). Thus, a = e and N ∩H = {e}.

Definition 1.3 (Outer Semidirect Product). Let us now consider the outer semidirect product. Given any

two groups N and H and a group homomorphism φ : H → Aut(N), we can construct a new group N ⋊φ H,

called the outer semidirect product of N and H with respect to φ, defined as follows:

• The underlying set is the Cartesian product N ×H.

• The group operation ⋆ is determined by the homomorphism φ : (N ⋊φ H)× (N ⋊φ H) → N ⋊φ H:

(n1, h1) ⋆ (n2, h2) = (n1φh1
(n2), h1h2)

for n1, n2 in N and h1, h2 in H.

This defines a group in which the identity element is (eN , eH) and the inverse of the element (n, h) is(
φh−1

(
n−1

)
, h−1

)
. Note how this connects to the inner semidirect product: {(eN , h) | h ∈ H} is a subgroup

of N ⋊φ H and is isomorphic to H; {(n, eH) | n ∈ N} is a normal subgroup of N ⋊φ H and is isomorphic to

N .

Proposition 1.4. Suppose N and H are subgroups of G such that the decomposition g = nh exists and is

unique for all g ∈ G. Let φ : H → Aut(N) be defined as φh(n) = hnh−1. Then G is isomorphic to the outer

semidirect product N ⋊φ H.

Proof. The isomorphism is given by λ : G → N ⋊φ H such that λ(g) = λ(nh) = (n, h). This is well-defined

because the decomposition exists and is unique. If a = n1h1 and b = n2h2, then

λ(ab) = λ(n1h1n2h2)

= λ(n1φh1
(n2)h1h2)

= (n1φh1
(n2), h1h2)

= (n1, h1) ⋆ (n2, h2)

= λ(a) ⋆ λ(b),

so λ is a homomorphism and is obviously a bijection. Thus, G ∼= N ⋊φ H.

2 Generality of Tensor Product

Definition 2.1. Let V be a vector space over the field K. The tensor of type (m,n) is the vector space of

the form V ⊗m ⊗ (V ∗)⊗n.

One easily sees from this definition that the following types of tensors can be identified with some common

objects/maps in algebra:

• Type (1, 0): vector space.

• Type (0, 1): covectors, also known as the dual space.

• Type (0, 2): bilinear forms on V . This is because V ∗ ⊗ V ∗ ∼= (V ⊗ V )∗.

• Type (1, 1): linear operators on V .
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3 Lie Algebras

Definition 3.1 (Algebra). An algebra A is a vector space equipped with a bilinear product from A×A → A.

Definition 3.2 (Lie Algebra). The bilinear product here is this Lie bracket operator [−,−] which satisfies

the following properties

1. bilinearity. [ax+ by, z] = a[x, z] + b[y, z] and [x, ay + bz] = a[x, y] + b[x, z]

2. Alternativity. [a, a] = 0

3. Jacobi Identity. [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

Using 1 and 2 one can show anticommutivity. 0 = [x+ y, x+ y] = [x, y] + [y, x].

Example 3.3. The trivial Lie bracket: [−,−] = 0.

Example 3.4. For an associative algebra A with bilinear product (−,−), define [a, b] = (a, b)− (b, a). Then

[a, b] is bilinear and alternativity follows from the Jacobi Identity.

[[a, b], c] + [[b, c], a] + [[c, a], b] = ([a, b], c)− (c, [a, b]) + ([b, c], a)− (a, [b, c]) + ([c, a], b)− (b, [c, a]) = 0.

A is called an enveloping algebra of (A, [−,−]). If we take A to be the associative algebra of endomorphisms

of a K-vector space V with dimension n. i.e n × n matrices with product defined as matrix multiplication,

then the above example is gln(K) or gl(V ).

3.1 Derivations

Definition 3.5 (Derivation). A derivation of an algebra A is an endomorphism D : A → A that satisfies

the Leibniz rule

D(a · b) = D(a) · b+ a ·D(b),

where · is the bilinear product on A. In the case of Lie Algebra A:

D([a, b]) = [D(a), b] + [a,D(b)]

Example 3.6. For a Lie Algebra A, fix some x ∈ A. Then the adjoint mapping adx(y) = [x, y] is a

derivation. The Leibniz rule follows from the Jacobi Identity.

adx([a, b]) = [x, [a, b]]

= −[[a, b], x]

= [[b, x], a] + [[x, a], b]

= [a, [x, b]] + [[x, a], b]

= [a, adx(b)] + [adx(a), b]

Example 3.7. Let A be an algebra with bilinear product “·” . The set of all derivations Der(A) is a Lie

subalgebra of gln(K), or End(A), with the commutator as the Lie bracket. It suffices to show that the
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commutator of two derivations is a derivation. Suppose φ, ρ ∈ Der(A), then

(φρ− ρφ)(v · w) = φρ(v · w)− ρφ(v · w)

= φ (ρ(v) · w + v · ρ(w))− ρ(φ(v) · w + v · φ(w))

= φρ(v) · w +�����
ρ(v) · φ(w) +�����

φ(v) · ρ(w) + v · φρ(w)

− ρφ(v) · w −�����
φ(v) · ρ(w)−�����

ρ(v) · φ(w)− v · ρφ(w)

= (φρ− ρφ)(v) · w − v · (φρ− ρφ)(w)

Hence, φρ− ρφ ∈ Der(A), so Der(A) is a Lie subalgebra of End(A).

4 The Tensor Algebra

Definition 4.1. For a vector space V , its kth tensor power is defined to be T kV = V ⊗k, and its tensor

algebra is defined as T (V ) =
⊕

n≥0 T
kV . The multiplication in T (V ) is defined as the “concatenation” of

tensor products and then extended linearly to other elements. For example,

(e2 ⊗ e5)(e1 ⊗ e3 ⊗ e4) = e2 ⊗ e5 ⊗ e1 ⊗ e3 ⊗ e4.

Therefore, T (V ) is has a graded algebra structure.

Proposition 4.2. The tensor algebra satisfies the universal property. Let V be a vector space over field K,

let i be the natural inclusion map from V to T (V ), and let A be an associative K-algebra. If there exists

a linear map f : V → A, then there exists a unique algebra homomorphism g : T (V ) → A such that the

following diagram commutes, i.e. f = g ◦ i.

V T (V )

A

i

∃!g
f

Proof. Define g by the following:

g(v1 ⊗ v2 ⊗ . . .⊗ vk) = f(v1) · f(v2) · . . . · f(vk),

extended linearly to all elements in T (V ). The dot on the right hand side is the bilinear product in A, and

we may drop the parenthesis because A is associative. Note that g is linear by definition. g is also obviously

an algebra homomorphism. Also note that f = g ◦ i because g ◦ i(v) = g(v) = f(v) for all v ∈ V . Finally, g

is unique because g and f must agree on vectors in V , and because g is an algebra homomorphism,

g(v1 ⊗ v2) = g(v1 · v2) = g(v1)g(v2) = f(v1)f(v2).

The same argument can be applied inductively and the uniqueness of g follows.

In categorical terms, the tensor algebra is a functor from the category of vector spaces to the category

of K-algebras.
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Definition 4.3 (Two Sided Ideal). Given a algebra A, a subalgebra I is an ideal of A if for all a ∈ A and

x ∈ I the products a · x, x · a ∈ I

Definition 4.4 (Symmetric Algebra). Let V be a vector space and T (V ) the associated tensor algebra.

Then we can define an ideal I generated by elements of the form x⊗ y− y⊗ x. The symmetric algebra of V

is defined as Sym(V ) = T (V )/I. The kth symmetric power of V is the subspace of S(V ) spanned by k-fold

symmetric product of vectors in V .

Because we quotient out vectors of the form x⊗y−y⊗x, it follows that S(V ) is isomorphic K[B], where

B is considered as indeterminate. This provides a coordinate-free way polynomial ring over V .
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