06/02/22 Notes

Dylan Chiu and Zhuo Zhang

June 2, 2022

• Next meeting time: 10am on Friday at Noyes 165

1 Semidirect Product

Definition 1.1 (Inner Semidirect Product). Given a group G with identity element e, a subgroup H, and a normal subgroup $N \trianglelefteq G$, we say that G is the semidirect product of N and H and write $G = N \rtimes H$ if G = NH (product of two subgroups) and $N \cap H = \{e\}$.

Proposition 1.2. The following statements are equivalent:

- (a) $G = N \rtimes H$.
- (b) For every $g \in G$, there are unique $n \in N$ and $h \in H$ such that g = nh.
- (c) For every $g \in G$, there are unique $h \in H$ and $n \in N$ such that g = hn.
- (d) The composition $\pi \circ i$ of the natural embedding $i : H \to G$ with the natural projection $\pi : G \to G/N$ is an isomorphism between H and the quotient group G/N.
- (e) There exists a homomorphism $G \to H$ that is the identity on H and whose kernel is N. In other words, there is a split exact sequence of groups:

$$1 \to N \to G \to H \to 1$$

Proof. (a) implies (b): The existence is obvious. Suppose $g = n_1h_1 = n_2h_2$, then $h_1^{-1}n_1h_1 = h_1^{-1}n_2h_2$, so $h_1^{-1}n_1h_1 = (h_1^{-1}n_2h_1)(h_1^{-1}h_2)$. Therefore, $(h_1^{-1}n_1h_1)(h_1^{-1}n_2h_1)^{-1} = h_1^{-1}h_2 \in N \cap H = \{e\}$, so $h_1 = h_2$, and the result follows.

(b) implies (c): Let $g \in G$ be given, then $g^{-1} = nh$ for some $n \in N$ and $h \in H$. Thus, $g = h^{-1}n^{-1}$ for some unique $n \in N$ and $h \in H$. Uniqueness follows by way of contradiction.

(c) implies (d): $\pi \circ i$ is clearly a homomorphism. Because h = he trivially, this must be the unique decomposition of h. Since $\pi \circ i(h) = \pi(h) = hN$, if $\pi(h_1) = \pi(h_2)$, then $h_1N = h_2N$, but since h = he is the unique decomposition, it follows that $h_1 = h_2$. For any $gN \in G/N$, since g = hn for some unique n and h, it follows that gN = hN, and so $\pi \circ i(h) = gN$. Thus $\pi \circ i$ is an isomorphism.

(d) implies (e): Take the natural projection described in the previous statement.

(e) implies (a): Denote by φ the homomorphism from G to H with the desired property. Let $g \in G$ be given, then $\varphi(g) = h = \varphi(h)$ for some $h \in H$. Thus, $gh^{-1} \in \ker(\varphi) = N$, so g = nh for some $n \in N$ and

 $h \in H$, and so G = NH. Consider any $a \in N \cap H$, then $\varphi(a) = a$ because $\varphi|_H = \mathrm{id}_H$ but $\varphi(a) = e$ because $a \in \mathrm{ker}(\varphi)$. Thus, a = e and $N \cap H = \{e\}$.

Definition 1.3 (Outer Semidirect Product). Let us now consider the outer semidirect product. Given any two groups N and H and a group homomorphism $\varphi : H \to \operatorname{Aut}(N)$, we can construct a new group $N \rtimes_{\varphi} H$, called the outer semidirect product of N and H with respect to φ , defined as follows:

- The underlying set is the Cartesian product $N \times H$.
- The group operation \star is determined by the homomorphism $\varphi : (N \rtimes_{\varphi} H) \times (N \rtimes_{\varphi} H) \to N \rtimes_{\varphi} H$:

$$(n_1, h_1) \star (n_2, h_2) = (n_1 \varphi_{h_1}(n_2), h_1 h_2)$$

for n_1, n_2 in N and h_1, h_2 in H.

This defines a group in which the identity element is (e_N, e_H) and the inverse of the element (n, h) is $(\varphi_{h^{-1}}(n^{-1}), h^{-1})$. Note how this connects to the inner semidirect product: $\{(e_N, h) \mid h \in H\}$ is a subgroup of $N \rtimes_{\varphi} H$ and is isomorphic to H; $\{(n, e_H) \mid n \in N\}$ is a normal subgroup of $N \rtimes_{\varphi} H$ and is isomorphic to N.

Proposition 1.4. Suppose N and H are subgroups of G such that the decomposition g = nh exists and is unique for all $g \in G$. Let $\varphi : H \to \operatorname{Aut}(N)$ be defined as $\varphi_h(n) = hnh^{-1}$. Then G is isomorphic to the outer semidirect product $N \rtimes_{\varphi} H$.

Proof. The isomorphism is given by $\lambda : G \to N \rtimes_{\varphi} H$ such that $\lambda(g) = \lambda(nh) = (n, h)$. This is well-defined because the decomposition exists and is unique. If $a = n_1h_1$ and $b = n_2h_2$, then

$$\begin{split} \lambda(ab) &= \lambda(n_1 h_1 n_2 h_2) \\ &= \lambda(n_1 \varphi_{h_1}(n_2) h_1 h_2) \\ &= (n_1 \varphi_{h_1}(n_2), h_1 h_2) \\ &= (n_1, h_1) \star (n_2, h_2) \\ &= \lambda(a) \star \lambda(b), \end{split}$$

so λ is a homomorphism and is obviously a bijection. Thus, $G \cong N \rtimes_{\varphi} H$.

2 Generality of Tensor Product

Definition 2.1. Let V be a vector space over the field \mathbb{K} . The tensor of type (m, n) is the vector space of the form $V^{\otimes m} \otimes (V^*)^{\otimes n}$.

One easily sees from this definition that the following types of tensors can be identified with some common objects/maps in algebra:

- Type (1,0): vector space.
- Type (0, 1): covectors, also known as the dual space.
- Type (0,2): bilinear forms on V. This is because $V^* \otimes V^* \cong (V \otimes V)^*$.
- Type (1,1): linear operators on V.

3 Lie Algebras

Definition 3.1 (Algebra). An algebra \mathcal{A} is a vector space equipped with a bilinear product from $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$.

Definition 3.2 (Lie Algebra). The bilinear product here is this Lie bracket operator [-, -] which satisfies the following properties

- 1. bilinearity. [ax + by, z] = a[x, z] + b[y, z] and [x, ay + bz] = a[x, y] + b[x, z]
- 2. Alternativity. [a, a] = 0
- 3. Jacobi Identity. [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

Using 1 and 2 one can show anticommutivity. 0 = [x + y, x + y] = [x, y] + [y, x].

Example 3.3. The trivial Lie bracket: [-, -] = 0.

Example 3.4. For an associative algebra \mathcal{A} with bilinear product (-, -), define [a, b] = (a, b) - (b, a). Then [a, b] is bilinear and alternativity follows from the Jacobi Identity.

$$[[a,b],c] + [[b,c],a] + [[c,a],b] = ([a,b],c) - (c,[a,b]) + ([b,c],a) - (a,[b,c]) + ([c,a],b) - (b,[c,a]) = 0.$$

 \mathcal{A} is called an *enveloping* algebra of $(\mathcal{A}, [-, -])$. If we take \mathcal{A} to be the associative algebra of endomorphisms of a \mathbb{K} -vector space V with dimension n. i.e $n \times n$ matrices with product defined as matrix multiplication, then the above example is $\mathfrak{gl}_n(\mathbb{K})$ or $\mathfrak{gl}(V)$.

3.1 Derivations

Definition 3.5 (Derivation). A derivation of an algebra \mathcal{A} is an endomorphism $D : \mathcal{A} \to \mathcal{A}$ that satisfies the Leibniz rule

$$D(a \cdot b) = D(a) \cdot b + a \cdot D(b),$$

where \cdot is the bilinear product on \mathcal{A} . In the case of Lie Algebra \mathcal{A} :

$$D([a,b]) = [D(a),b] + [a,D(b)]$$

Example 3.6. For a Lie Algebra \mathcal{A} , fix some $x \in \mathcal{A}$. Then the adjoint mapping $\operatorname{ad}_x(y) = [x, y]$ is a derivation. The Leibniz rule follows from the Jacobi Identity.

$$ad_x([a, b]) = [x, [a, b]]$$

= -[[a, b], x]
= [[b, x], a] + [[x, a], b]
= [a, [x, b]] + [[x, a], b]
= [a, ad_x(b)] + [ad_x(a), b]

Example 3.7. Let \mathcal{A} be an algebra with bilinear product "·". The set of all derivations $\text{Der}(\mathcal{A})$ is a Lie subalgebra of $\mathfrak{gl}_n(\mathbb{K})$, or $\text{End}(\mathcal{A})$, with the commutator as the Lie bracket. It suffices to show that the

commutator of two derivations is a derivation. Suppose $\varphi, \rho \in \text{Der}(\mathcal{A})$, then

$$\begin{aligned} (\varphi \rho - \rho \varphi)(v \cdot w) &= \varphi \rho(v \cdot w) - \rho \varphi(v \cdot w) \\ &= \varphi \left(\rho(v) \cdot w + v \cdot \rho(w) \right) - \rho(\varphi(v) \cdot w + v \cdot \varphi(w)) \\ &= \varphi \rho(v) \cdot w + \underline{\rho(v)} \cdot \varphi(w) + \underline{\varphi(v)} \cdot p(w) + v \cdot \varphi \rho(w) \\ &- \rho \varphi(v) \cdot w - \underline{\varphi(v)} \cdot p(w) - \underline{\rho(v)} \cdot \varphi(w) - v \cdot \rho \varphi(w) \\ &= (\varphi \rho - \rho \varphi)(v) \cdot w - v \cdot (\varphi \rho - \rho \varphi)(w) \end{aligned}$$

Hence, $\varphi \rho - \rho \varphi \in \text{Der}(\mathcal{A})$, so $\text{Der}(\mathcal{A})$ is a Lie subalgebra of $\text{End}(\mathcal{A})$.

4 The Tensor Algebra

Definition 4.1. For a vector space V, its kth tensor power is defined to be $T^k V = V^{\otimes k}$, and its tensor algebra is defined as $T(V) = \bigoplus_{n\geq 0} T^k V$. The multiplication in T(V) is defined as the "concatenation" of tensor products and then extended linearly to other elements. For example,

$$(e_2 \otimes e_5)(e_1 \otimes e_3 \otimes e_4) = e_2 \otimes e_5 \otimes e_1 \otimes e_3 \otimes e_4.$$

Therefore, T(V) is has a graded algebra structure.

Proposition 4.2. The tensor algebra satisfies the universal property. Let V be a vector space over field \mathbb{K} , let i be the natural inclusion map from V to T(V), and let \mathcal{A} be an associative \mathbb{K} -algebra. If there exists a linear map $f: V \to \mathcal{A}$, then there exists a unique algebra homomorphism $g: T(V) \to \mathcal{A}$ such that the following diagram commutes, i.e. $f = g \circ i$.

Proof. Define g by the following:

$$g(v_1 \otimes v_2 \otimes \ldots \otimes v_k) = f(v_1) \cdot f(v_2) \cdot \ldots \cdot f(v_k),$$

extended linearly to all elements in T(V). The dot on the right hand side is the bilinear product in \mathcal{A} , and we may drop the parenthesis because \mathcal{A} is associative. Note that g is linear by definition. g is also obviously an algebra homomorphism. Also note that $f = g \circ i$ because $g \circ i(v) = g(v) = f(v)$ for all $v \in V$. Finally, gis unique because g and f must agree on vectors in V, and because g is an algebra homomorphism,

$$g(v_1 \otimes v_2) = g(v_1 \cdot v_2) = g(v_1)g(v_2) = f(v_1)f(v_2).$$

The same argument can be applied inductively and the uniqueness of q follows.

In categorical terms, the tensor algebra is a functor from the category of vector spaces to the category of \mathbb{K} -algebras.

Definition 4.3 (Two Sided Ideal). Given a algebra \mathcal{A} , a subalgebra I is an ideal of \mathcal{A} if for all $a \in \mathcal{A}$ and $x \in I$ the products $a \cdot x, x \cdot a \in I$

Definition 4.4 (Symmetric Algebra). Let V be a vector space and T(V) the associated tensor algebra. Then we can define an ideal I generated by elements of the form $x \otimes y - y \otimes x$. The symmetric algebra of V is defined as Sym(V) = T(V)/I. The kth symmetric power of V is the subspace of S(V) spanned by k-fold symmetric product of vectors in V.

Because we quotient out vectors of the form $x \otimes y - y \otimes x$, it follows that S(V) is isomorphic $\mathbb{K}[B]$, where B is considered as indeterminate. This provides a coordinate-free way polynomial ring over V.