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1 Semidirect Product

Definition 1.1 (Inner Semidirect Product). Given a group G with identity element e, a subgroup H, and
a normal subgroup N < G, we say that G is the semidirect product of N and H and write G = N x H if
G = NH (product of two subgroups) and N N H = {e}.

Proposition 1.2. The following statements are equivalent:
(a) G=N x H.
(b) For every g € G, there are unique n € N and h € H such that g = nh.
(c) For every g € G, there are unique h € H and n € N such that g = hn.

(d) The composition o4 of the natural embedding i : H — G with the natural projection m : G — G /N s

an isomorphism between H and the quotient group G/N.

(e) There exists a homomorphism G — H that is the identity on H and whose kernel is N. In other words,

there is a split exact sequence of groups:

1-N—-G—-H-—1

Proof. (a) implies (b): The existence is obvious. Suppose g = nih; = naha, then hflnlhl = hflnghg7 SO
hi'nihy = (b nahy) (B hs). Therefore, (hi'nihy) (hi'nahy) ™" = hi'hy € NN H = {e}, s0 hy = ho,
and the result follows.

(b) implies (c): Let g € G be given, then g—' = nh for some n € N and h € H. Thus, g = h~'n~! for
some unique n € N and h € H. Uniqueness follows by way of contradiction.

(c) implies (d): 7 o4 is clearly a homomorphism. Because h = he trivially, this must be the unique
decomposition of h. Since woi(h) = w(h) = hN, if w(h1) = w(hs), then hy N = ho N, but since h = he is the
unique decomposition, it follows that hy = he. For any gN € G/N, since g = hn for some unique n and h,
it follows that gV = hN, and so w0 i(h) = gN. Thus 7 o i is an isomorphism.

(d) implies (e): Take the natural projection described in the previous statement.

(e) implies (a): Denote by ¢ the homomorphism from G to H with the desired property. Let g € G be
given, then ¢(g) = h = ¢(h) for some h € H. Thus, gh™! € ker(p) = N, so g = nh for some n € N and



h € H, and so G = NH. Consider any a € N N H, then ¢(a) = a because ¢|g = idy but ¢(a) = e because
a € ker(p). Thus, a = e and NN H = {e}. O

Definition 1.3 (Outer Semidirect Product). Let us now consider the outer semidirect product. Given any
two groups N and H and a group homomorphism ¢ : H — Aut(V), we can construct a new group N x, H,

called the outer semidirect product of N and H with respect to ¢, defined as follows:
e The underlying set is the Cartesian product N x H.

e The group operation « is determined by the homomorphism ¢ : (N x, H) x (N x, H) = N %, H:

(nlvhl) * (n2,h2) = (nlsﬁhl (nz),hlhz)
for n1,n9 in N and hy,hy in H.

This defines a group in which the identity element is (ey,eq) and the inverse of the element (n,h) is
(¢n-1 (n7'),h™1). Note how this connects to the inner semidirect product: {(ex,h) | h € H} is a subgroup
of N x, H and is isomorphic to H; {(n,eq) | n € N} is a normal subgroup of N x, H and is isomorphic to
N.

Proposition 1.4. Suppose N and H are subgroups of G such that the decomposition g = nh exists and is
unique for all g € G. Let p : H — Aut(N) be defined as ¢p(n) = hnh=t. Then G is isomorphic to the outer
semidirect product N X, H.

Proof. The isomorphism is given by A : G — N x, H such that A\(g) = A(nh) = (n,h). This is well-defined

because the decomposition exists and is unique. If a = n1hy and b = nghs, then
Aab) = A(n1hinzhs)
= Mn1pn, (n2)hihz)
= (n1¢n, (n2), hihz)
= (n1, h1) * (n2, ha)
= Aa) * A(b),

so A is a homomorphism and is obviously a bijection. Thus, G = N x, H. O

2 Generality of Tensor Product

Definition 2.1. Let V' be a vector space over the field K. The tensor of type (m,n) is the vector space of
the form V®™ @ (V*)&n

One easily sees from this definition that the following types of tensors can be identified with some common

objects/maps in algebra:
e Type (1,0): vector space.
e Type (0,1): covectors, also known as the dual space.
e Type (0,2): bilinear forms on V. This is because V* @ V* = (V @ V)*.

e Type (1,1): linear operators on V.



3 Lie Algebras

Definition 3.1 (Algebra). An algebra A is a vector space equipped with a bilinear product from Ax A — A.

Definition 3.2 (Lie Algebra). The bilinear product here is this Lie bracket operator [—, —] which satisfies

the following properties
1. bilinearity. [az + by, z] = a[z, 2] + bly, 2] and [z, ay + bz] = a[z, y]| + b[z, 2]
2. Alternativity. [a,a] =0
3. Jacobi Identity. [[a,b],c] + [[b,c],a] + [[c,a],b] =0
Using 1 and 2 one can show anticommutivity. 0 = [z + y,z + y] = [z,y] + [y, z].
Example 3.3. The trivial Lie bracket: [—, —] = 0.

Example 3.4. For an associative algebra A with bilinear product (—, —), define [a, b] = (a,b) — (b,a). Then

[a,b] is bilinear and alternativity follows from the Jacobi Identity.
[[a’v b]’ C] + [[b7 c},a] + HC, a]v b] = ([av b]vc) - (C’ [CL, b]) + ([ba C]’ a) - (a7 [ba C]) + ([Cv a’}v b) - (bv [C7 (ID =0.

A is called an enveloping algebra of (A, [—, —]). If we take A to be the associative algebra of endomorphisms
of a K-vector space V with dimension n. i.e n X n matrices with product defined as matrix multiplication,

then the above example is gl,,(K) or gl(V).

3.1 Derivations

Definition 3.5 (Derivation). A derivation of an algebra A is an endomorphism D : A — A that satisfies

the Leibniz rule
D(a-b)=D(a)-b+a-D(b),

where - is the bilinear product on A. In the case of Lie Algebra A:
D([a,b]) = [D(a),b] + [a, D(D)]

Example 3.6. For a Lie Algebra A, fix some € A. Then the adjoint mapping ad,(y) = [z,y] is a

derivation. The Leibniz rule follows from the Jacobi Identity.
ady([a,b]) = [z, [a, b]]
= —l[a, b}, 7]
= [[b,z], a] + [[z, a], b]
= [a, [z, 0] + [[z, a], b]
= [a,ad. ()] + [ads(a), b]

Example 3.7. Let A be an algebra with bilinear product “” . The set of all derivations Der(A) is a Lie
subalgebra of gl,(K), or End(A), with the commutator as the Lie bracket. It suffices to show that the



commutator of two derivations is a derivation. Suppose @, p € Der(A), then

(p = pp)(v-w) = @p(v - w) — pp(v - w)
=@ (p(v) - w+v-pw)) = ple(v)  w+v-pw))
= ¢p(v) - w + p(r)-p(w) + p)p(w) + v - pp(w)
— pp(v) - w — (W) — p(L)—ptw) — v - pp(w)

= (pp — pp)(v) - w —v - (pp — pp)(w)

Hence, ¢p — pp € Der(.A), so Der(A) is a Lie subalgebra of End(A).

4 The Tensor Algebra

Definition 4.1. For a vector space V, its kth tensor power is defined to be TFV = V®F and its tensor
algebra is defined as T'(V)) = €D, T*V. The multiplication in T(V) is defined as the “concatenation” of

tensor products and then extended linearly to other elements. For example,
(e2®es5)(e1®e3®eq) =ea®@es Rey Rez @ ey.
Therefore, T'(V') is has a graded algebra structure.

Proposition 4.2. The tensor algebra satisfies the universal property. Let V be a vector space over field K,
let i be the natural inclusion map from V to T(V), and let A be an associative K-algebra. If there erists
a linear map f :' V — A, then there exists a unique algebra homomorphism g : T(V) — A such that the

following diagram commutes, i.e. f = goi.

V— 5 T(V)
f iﬂ!g
A

Proof. Define g by the following:

g1 ®va® ... @vg) = f(v1) - fva) ... flvr),

extended linearly to all elements in T'(V'). The dot on the right hand side is the bilinear product in A, and
we may drop the parenthesis because A is associative. Note that g is linear by definition. g is also obviously
an algebra homomorphism. Also note that f = g o i because goi(v) = g(v) = f(v) for all v € V. Finally, g

is unique because g and f must agree on vectors in V', and because g is an algebra homomorphism,

g(v1 ®v2) = g(v1 - v2) = g(v1)g(v2) = f(v1)f(v2).
The same argument can be applied inductively and the uniqueness of g follows. O

In categorical terms, the tensor algebra is a functor from the category of vector spaces to the category

of K-algebras.



Definition 4.3 (Two Sided Ideal). Given a algebra A, a subalgebra I is an ideal of A if for all a € A and
x € I the products a-z,x-a € [

Definition 4.4 (Symmetric Algebra). Let V' be a vector space and T(V) the associated tensor algebra.
Then we can define an ideal I generated by elements of the form x ® y —y ® . The symmetric algebra of V/
is defined as Sym(V) = T(V)/I. The kth symmetric power of V' is the subspace of S(V') spanned by k-fold

symmetric product of vectors in V.

Because we quotient out vectors of the form z ® y —y ® z, it follows that S(V') is isomorphic K[B], where

B is considered as indeterminate. This provides a coordinate-free way polynomial ring over V.



