06/01/22 Notes

Dylan Roscow and Zhuo Zhang

June 1, 2022

- Next meeting time: 10am on Thursday at Noyes 165

1 More on Tensor Product

First recall the following proposition:
Proposition 1.1. Let V, W be finite dimensional vector spaces of dimensions m and n over a field \mathbb{K}, then $\operatorname{Hom}(V, W) \cong V^{*} \otimes W$.

Proof. Although we can see directly from their dimensions that $\operatorname{Hom}(V, W)$ is isomorphic to $V^{*} \otimes W$, here we shall construct a more "canonical" map between these two spaces. Take $T \in \operatorname{Hom}(V, W)$ and an arbitrary vector $v \in V$, we have

$$
T(v)=a_{1}^{(v)} w_{1}+a_{2}^{(v)} w_{2}+\cdots+a_{n}^{(v)} w_{n}
$$

where $a_{i}^{(v)}$ are scalars depending on v. Note that

$$
\sum_{i=1}^{n} a_{i}^{(u+\lambda v)} w_{i}=T(u+\lambda v)=T(u)+\lambda T(v)=\sum_{i=1}^{n}\left(a_{i}^{(u)}+\lambda a_{i}^{(v)}\right) w_{i}
$$

It follows that each $a_{i} \in \operatorname{Hom}(V, \mathbb{K})=V^{*}$. Now define a map $\psi: \operatorname{Hom}(V, W) \rightarrow V^{*} \otimes W$ to be:

$$
\psi(T)=a_{1} \otimes w_{1}+a_{2} \otimes w_{2}+\cdots+a_{m} \otimes w_{m}
$$

The claim is that this map is an isomorphism. First, it is linear because if

$$
\psi(T)=\sum_{i=1}^{n} a_{i} \otimes w_{i} \quad \text { and } \quad \psi(U)=\sum_{i=1}^{n} b_{i} \otimes w_{i}
$$

then we have

$$
\begin{gathered}
(T+\lambda U)(v)=\sum_{i=1}^{n}\left(a_{i}^{(v)}+\lambda b_{i}^{(v)}\right) w_{i} \\
\Rightarrow \psi(T+\lambda U)=\sum_{i=1}^{n}\left(a_{i}+\lambda b_{i}\right) \otimes w_{i}=\sum_{i=1}^{n} a_{i} \otimes w_{i}+\lambda\left(\sum_{i=1}^{n} b_{i} \otimes w_{i}\right)=\psi(T)+\lambda \psi(U)
\end{gathered}
$$

So the map is linear. Next, we show that the map is surjective. Suppose V and W have bases $\left\{v_{1}, \cdots, v_{m}\right\}$ and $\left\{w_{1}, \cdots, w_{n}\right\}$, then each basis vector of $V^{*} \otimes W$ is of the form $v_{i}^{*} \otimes w_{j}$, where $v_{i}^{*}\left(v_{k}\right)=\delta_{i k}$. It suffices to show that each basis of this form is hit by ψ. For fixed i and j, consider $T: V \rightarrow W$ defined by its action on the basis of V :

$$
T\left(v_{k}\right)=\delta_{i k} w_{j}=v_{i}^{*}\left(v_{k}\right) w_{j}
$$

T is clearly linear. Also notice that $\psi(T)=v_{i}^{*} \otimes w_{j}$, so the map ψ is surjective, which is enough to say that ψ is an isomorphism because $\operatorname{dim}(\operatorname{Hom}(V, W))=\operatorname{dim}\left(V^{*} \otimes W\right)$

One direct consequence of Proposition 1.1 is that, suppose V and W are representations of G, then V^{*} is also a representation of G. Thus, $\operatorname{Hom}(V, W) \cong V^{*} \otimes W$ is also a representation of G.

Corollary 1.2. Let $\varphi: G \rightarrow G L(V)$ and $\rho: G \rightarrow G L(W)$ be representations of G, then $\operatorname{Hom}(V, W)$ is also a G-module, with the action defined as follows. For $g \in G$ and $T \in \operatorname{Hom}(V, W)$:

$$
(g \cdot T)(v)=\varphi_{g} T \rho_{g^{-1}}(v)
$$

Proof. The action on $\operatorname{Hom}(V, W)$ is clearly linear. It is invertible because action by g^{-1} is its inverse. Finally, the map from G to $\operatorname{Hom}(V, W)$ is a homomorphism because

$$
(g h) \cdot T=\varphi_{g h} T \rho_{(g h)^{-1}}=\varphi_{g} \varphi_{h} T \rho_{h^{-1}} \rho_{g^{-1}}=g(h \cdot T)
$$

2 Application: Matrix Multiplication

Note that matrix multiplication is a bilinear map $V \times V \rightarrow V$, where V is the vector space of $n \times n$ matrices. Hence, by the universal property of tensor product:

There exists a unique map h :

$$
h \in \operatorname{Hom}(V \otimes V, V) \cong(V \otimes V)^{*} \otimes V \cong V^{*} \otimes V^{*} \otimes V \cong V^{\otimes 3}
$$

Hence, the map h, which represents matrix multiplication, is a vector in the vector space $V^{\otimes 3}$. Here we have used the following fact.

Proposition 2.1. Let V, W be finite dimensional vector spaces of dimensions m and n over a field \mathbb{K}, then $(V \otimes W)^{*} \cong V^{*} \otimes W^{*}$.

Proof. We shall again construct a canonical map. Suppose V and W have bases $\beta=\left\{v_{1}, \cdots, v_{m}\right\}$ and $\gamma=\left\{w_{1}, \cdots, w_{n}\right\}$. Define the map $\psi: V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$ by its action on the basis of $V^{*} \otimes W^{*}:$

$$
\psi(f \otimes g)(v \otimes w)=f(v) g(w)
$$

ψ is linear by definition. We now show that it is one-to-one. Suppose $\psi(f \otimes g)(v \otimes w)=f(v) g(w)=0$ for all $v \in V, W \in W$. That is, $f \otimes g$ is mapped to the zero function on $V \otimes W$, then we argue that either $f=0$ or $g=0$. Suppose that there exists some $v \in V$ such that $f(v) \neq 0$. Since $f(v) g\left(w_{j}\right)=0$ for all w_{j}, we conclude that $g\left(w_{j}\right)=0$, so g is the zero function on W. Thus, $f \otimes g=0$. The other case can be proved similarly. Hence, $\operatorname{ker}(\psi)=\{0\}$, and the map is one-to-one and thus an isomorphism.

Remark. The result can be extended to the case where V and W are infinite dimensional. For this proof, see https://planetmath.org/tensorproductofdualspacesisadualspaceoftensorproduct.

3 Representation Ring

Definition 3.1. The representation ring of a group G, also called the Grothendieck ring, is the set of isomorphism classes of representations of G with a ring structure. Addition is defined as direct sum, and multiplication is defined as tensor product. More precisely, suppose φ and ρ are two representations of G and [•] is their isomorphism classes, then

$$
[\varphi]+[\rho]:=[\varphi \oplus \rho] \quad[\varphi] \cdot[\rho]:=[\varphi \otimes \rho] .
$$

The additive identity of $\operatorname{Rep}(G)$ is the formal zero, so inverse is also defined formally. The multiplicative identity of $\operatorname{Rep}(G)$ is the trivial representation.

Proposition 3.2. Addition and multiplication in $\operatorname{Rep}(G)$ are well-defined.
Proof. Suppose $\varphi \sim \varphi^{\prime}$ and $\rho \sim \rho^{\prime}$, then $\chi_{\varphi}=\chi_{\varphi^{\prime}}$ and $\chi_{\rho}=\chi_{\rho^{\prime}}$. Therefore,

$$
\chi_{\varphi \oplus \rho}=\chi_{\varphi}+\chi_{\rho}=\chi_{\varphi^{\prime}}+\chi_{\rho^{\prime}}=\chi_{\varphi^{\prime} \oplus \rho^{\prime}} \quad \Longrightarrow \quad \varphi \oplus \rho \sim \varphi^{\prime} \oplus \rho^{\prime}
$$

The same can be proved for multiplication.

4 Group Product and Their Representation

Given two groups G and H, their Cartesian product $G \times H$ is a group under the operation $(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=$ $\left(g g^{\prime}, h h^{\prime}\right)$. Additionally, $1_{G \times H}=\left(1_{G}, 1_{H}\right)$. Given two representations of G and H, we can construct a representation of $G \times H$ as follows:

Proposition 4.1. Given representation $p: G \rightarrow \mathrm{GL}(V)$ and $q: H \rightarrow \mathrm{GL}(W)$, then $p \otimes q: G \times H \rightarrow$ $\mathrm{GL}(V \otimes W)$, defined by the action $(g, h) \cdot(v \otimes w)=(g \cdot v) \otimes(h \cdot w)$ extended linearly, is a representation.

Proof. For any $(g, h),\left(g^{\prime}, h^{\prime}\right) \in G \times H$:

$$
\begin{aligned}
\left((g, h) \cdot\left(g^{\prime}, h^{\prime}\right)\right) \cdot(v \otimes w) & =\left(\left(g g^{\prime}\right) \cdot v\right) \otimes\left(\left(h h^{\prime}\right) \cdot w\right) \\
& =\left(g \cdot\left(g^{\prime} \cdot v\right)\right) \otimes\left(h \cdot\left(h^{\prime} \cdot w\right)\right) \\
& =(g, h) \cdot\left(\left(g^{\prime}, h^{\prime}\right) \cdot(v \otimes w)\right)
\end{aligned}
$$

Therefore, $p \otimes q$ is a representation.
Lemma 4.2. For any representations p and q, we have $\chi_{p \otimes q}(g, h)=\chi_{p}(g) \cdot \chi_{q}(h)$.
Proof. As with the tensor product of G-modules, the matrix corresponding to $p \otimes q$ is given by the Kronecker product. Thus, $\chi_{p \otimes q}(g, h)=\operatorname{Tr}((p \otimes q)(g, h))=\operatorname{Tr}(p(g) \otimes q(h))=\operatorname{Tr}(p(g)) \cdot \operatorname{Tr}(q(h))=\chi_{p}(g) \cdot \chi_{q}(h)$.

Proposition 4.3. If p and q are irreducible, then $p \otimes q$ is irreducible.

Proof. Since p and q are irreducible, we have $\left(\chi_{p} \mid \chi_{p}\right)=1$ and $\left(\chi_{q} \mid \chi_{q}\right)=1$. Thus, using the lemma:

$$
\begin{aligned}
\left(\chi_{p \otimes q} \mid \chi_{p \otimes q}\right) & =\frac{1}{|G \times H|} \sum_{(g, h) \in G \times H}\left|\chi_{p \otimes q}(g, h)\right|^{2} \\
& =\frac{1}{|G| \cdot|H|} \sum_{g \in G} \sum_{h \in H}\left|\chi_{p}(g)\right|^{2} \cdot\left|\chi_{q}(h)\right|^{2} \\
& =\left(\frac{1}{|G|} \sum_{g \in G}\left|\chi_{p}(g)\right|^{2}\right)\left(\frac{1}{|H|} \sum_{h \in H}\left|\chi_{q}(h)\right|^{2}\right) \\
& =\left(\chi_{p} \mid \chi_{p}\right)\left(\chi_{q} \mid \chi_{q}\right)=1 \cdot 1=1
\end{aligned}
$$

Therefore, since $\left(\chi_{p \otimes q} \mid \chi_{p \otimes q}\right)=1$, we have that $p \otimes q$ is irreducible.
Proposition 4.4. The converse is also true. That is, each irreducible representation of $G_{1} \times G_{2}$ is of the form $p \otimes q$, where p and q are some irreducible representations of G_{1} and G_{2}, respectively.

Proof. Let $\chi_{1}^{(1)}, \cdots, \chi_{k}^{(1)}$ be a complete set of irreducible characters of G_{1}, and same for $\chi_{1}^{(2)}, \cdots, \chi_{\ell}^{(2)}$. From proposition 4.3 we know that characters of the form $\chi_{i}^{(1)}\left(s_{1}\right) \chi_{j}^{(2)}\left(s_{2}\right)$ are irreducible. We want to show that there are no other irreducible characters of $G_{1} \times G_{2}$. Because distinct irreducible characters are orthonormal, it suffices to show that any class function on $G_{1} \times G_{2}$ that is orthogonal to all of $\chi_{i}^{(1)}\left(s_{1}\right) \chi_{j}^{(2)}\left(s_{2}\right)$ is zero. To see, suppose f is a class function on $G_{1} \times G_{2}$ such that

$$
\sum_{\left(s_{1}, s_{2}\right) \in G_{1} \times G_{2}} f\left(s_{1}, s_{2}\right) \overline{\chi_{i}^{(1)}\left(s_{1}\right) \chi_{j}^{(2)}\left(s_{2}\right)}=0 \quad \text { for all } i, j
$$

Now, fix $\chi_{j}^{(2)}$ and s_{2} and consider the function h :

$$
h\left(s_{1}\right)=\sum_{s_{2} \in G_{2}} f\left(s_{1}, s_{2}\right) \chi_{j}^{(2)}\left(s_{2}\right)
$$

Then h is a class function because

$$
h\left(t_{1} s_{1} t_{1}^{-1}\right)=\sum_{s_{2} \in G_{2}} f\left(t_{1} s_{1} t_{1}^{-1}, s_{2}\right) \chi_{j}^{(2)}\left(s_{2}\right)=\sum_{s_{2} \in G_{2}} f\left(s_{1}, s_{2}\right) \chi_{j}^{(2)}\left(s_{2}\right)=h\left(s_{1}\right)
$$

Substituting h into the first equation gives

$$
\sum_{s_{1} \in G_{1}} h\left(s_{1}\right) \overline{\chi_{i}^{(1)}\left(s_{1}\right)}=0 \Rightarrow\left\langle h, \chi_{i}^{(1)}\right\rangle=0
$$

Since h is a class function on G_{1} and is orthogonal to $\chi_{i}^{(1)}$ for all i, it follows that $h=0$. Hence, f is orthogonal to all $\chi_{j}^{(2)}$, but f is a class function on G_{2} when s_{1} is fixed, and so it follows that $f=0$, which concludes the proof.

5 Frobenius Characteristic Map

Definition 5.1. The characteristic vector space R^{n} of S_{n} is the set of all formal linear combinations of irreducible characters of S_{n}. That is:

$$
R^{n}=\left\{\sum_{\lambda \vdash n} a_{\lambda} \chi_{\lambda} \mid a_{\lambda} \in \mathbb{C}\right\}
$$

We can gather these together into one large vector space R as follows:

$$
R=\bigoplus_{n=0}^{\infty} R^{n}
$$

Next, we wish to put a ring structure on R. We will do this using an induced representation (which will be formally defined later). Consider $\lambda \vdash n$ and $\mu \vdash m$ with their corresponding representations V_{λ} and V_{μ}. Then, $V_{\lambda} \otimes V_{\mu}$ is an $S_{n} \times S_{m}$ representation. We define the product of two characters as follows:

$$
\chi_{\lambda} \cdot \chi_{\mu}=\chi_{W}, \quad W=\operatorname{ind}_{S_{n} \times S_{m}}^{S_{n+m}}\left(V_{\lambda} \otimes V_{\mu}\right)
$$

Here, $W \in R^{n+m}$ because it can be decomposed as $\sum_{\nu \vdash n+m} a_{\nu} V_{\nu}$. This means that R has the structure of a graded ring (similar to polynomials).

Definition 5.2. Λ is the ring of symmetric formal power series. That is the set of all power series $f\left(x_{1}, x_{2}, \ldots\right)$ such that for any $\sigma \in S_{n}$, we have $f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}, x_{n+1}, \ldots\right)=f\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots\right)$.
Λ^{n} denotes the set of symmetric formal power series with degree n. We have a similar decomposition:

$$
\Lambda=\bigoplus_{n=0}^{\infty} \Lambda^{n}
$$

Λ^{n} is finite dimensional, with the dimension being the number of partitions of n. The following are two ways to explicitly give a basis of Λ^{n}. The first is the basis given by the monomial symmetric functions m_{λ}. For a given partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, define m_{λ} to be the formal sum of all monomials of the form $x_{\sigma(1)}^{\lambda_{1}} x_{\sigma(2)}^{\lambda_{2}} \cdots x_{\sigma(k)}^{\lambda_{k}}$ where σ is an arbitrary permutation.

For the other basis of elements h_{λ}, let h_{t} be the formal sum of all monomials of degree t. Then, define $h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots h_{\lambda_{k}}$.

Definition 5.3. The Hall inner product on Λ is the inner product such that $\left\langle m_{\lambda}, h_{\mu}\right\rangle=\delta_{\lambda \mu}$.
Now, we define the Frobenius Characteristic Map:
Definition 5.4. The Frobenius Characteristic Map ch : $R \rightarrow \Lambda$ is given by $\operatorname{ch}\left(\chi_{\lambda}\right)=s_{\lambda}$
It can be shown that ch is an isomorphism $\operatorname{ch}\left(\chi_{\lambda} \cdot \chi_{\mu}\right)=s_{\lambda} \cdot s_{\mu}$ and that it is an isometry under the Hall inner product $\langle f, g\rangle=\langle\operatorname{ch}(f), \operatorname{ch}(g)\rangle$.

