06/22/22 Notes

Zhuo Zhang and Dylan Roscow

June 22, 2022

1 Littlewood-Richardson Coefficients

The Littlewood-Richardson coefficients appear in many different contexts and have very rich combinatorial meanings.

Let groups G_{1} and G_{2} be given. Recall that the group product $G_{1} \times G_{2}$ is also a group, whose irreducible representations are exactly $\rho^{(1)} \otimes \rho^{(2)}$, where $\rho^{(i)}$ is are irreducible representations of G_{i}.

Let λ and μ be partitions of natural numbers m and n, respectively. Let V^{λ} and V^{μ} be the corresponding Specht modules (irreducible representations of the symmetric group S_{n}). Clearly there exists a natural inclusion map $i: S_{m} \times S_{n} \rightarrow S_{m+n}$, and so we have the induced representation $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}\left(V^{\lambda} \otimes V^{\mu}\right)$. To obtain the decomposition of this representation, we have

$$
\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}\left(V^{\lambda} \otimes V^{\mu}\right)=\underset{\nu \vdash m+n}{ } c_{\lambda \mu}^{\nu} V^{\nu} .
$$

Here, the non-negative integers $c_{\lambda \mu}^{\nu}$ are called the Littlewood-Richardson coefficients. We may also obtain a formula to describe these coefficients more explicitly:

$$
c_{\lambda \mu}^{\nu}=\operatorname{dim} \operatorname{Hom}\left(V^{\nu}, \operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}\left(V^{\lambda} \otimes V^{\mu}\right)\right) .
$$

By the Frobenius reciprocity formula, we also have the following equivalent statement:

$$
c_{\lambda \mu}^{\nu}=\operatorname{dim} \operatorname{Hom}\left(V^{\lambda} \otimes V^{\mu}, \operatorname{Res}_{S_{m} \times S_{n}}^{S_{m+n}} V^{\nu}\right) .
$$

The same Littlewood-Richardson coefficients also appear in the representation of $G L_{n}$, the general linear groups. Recall that the irreducible polynomial representations of $G L_{n}(\mathbb{C})$ are indexed by paritions of length at most n. Let V^{λ} and V^{μ} be two irreducible polynomial representations of $G L_{n}(\mathbb{C})$, then

$$
V^{\lambda} \otimes V^{\mu}=\bigoplus_{\ell(\nu) \leq n} c_{\lambda \mu}^{\nu} V^{\nu},
$$

or equivalently,

$$
c_{\lambda \mu}^{\nu}=\operatorname{dim} \operatorname{Hom}\left(V^{\nu}, V^{\lambda} \otimes V^{\mu}\right) .
$$

Moreover, the $c_{\lambda \mu}^{\nu}$'s also appears as the coefficients in expressing the product of two Schur polynomial as linear combinations of other Schur polynomials.

The Littlewood-Richardson coefficients are also related to the following Horn's conjecture. Given three Hermitian matrices A, B, C such that $A+B=C$ with the eigenvalues $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right), \mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$,
and $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ respectively. Then, for three partitions (λ, μ, ν) there are such matrices with these eigenvalues if and only if $c_{\lambda \mu}^{\nu}>0$. The final lemma for the proof of Horn's Conjecture is the following theorem:

Theorem 1.1 (Knutson-Tao Saturation Theorem). For partitions $\lambda, \mu, \nu, c_{\lambda \mu}^{\nu}>0$ if and only if $c_{N \lambda, N \mu}^{N \nu}>0$ for all $N \geq 1$, where $N \alpha=\left(N \alpha_{1}, \ldots, N \alpha_{n}\right)$.

Another related theorem in Kostant's Conjecture which was later proven by Berenstein and Zelevinsky.
Theorem 1.2. For a fixed n, let $\rho=(n, n-1, n-2, \ldots, 1)$. If μ is a partition such that $\ell(\mu) \leq n$ and $\mu \leq 2 \rho$ in dominance order, then $c_{\rho \rho}^{\mu}>0$.

We are looking at a generalization of this conjecture:
Conjecture 1.3 (Generalized Kostant's Conjecture). For a fixed n, again let $\rho=(n, n-1, n-2, \ldots, 1)$. For any $N \geq 1$, if μ is a partition such that $\ell(\mu) \leq n$ and $\mu \leq 2 N \rho$ in dominance order, then $c_{N \rho, N \rho}^{\mu}>0$.

The following theorem provides a way to compute the Littlewood-Richardson coefficients.
Theorem 1.4 (Littlewood-Richardson Rule). Let λ, μ, ν be given partitions. The Littlewood-Richardson Rule states that the coefficient $c_{\lambda \mu}^{\nu}$ is equal to the number of tableaux with the following properties: first, it has shape ν / λ and content μ; second, it is semistandard, which is to say that the rows are weakly increasing and columns are strictly increasing; finally, the ballot condition has to be satisfied: for any initial part of the sequence obtained by concatenating the reversed rows, the number of i 's must be greater than or equal to the number of $i+1$'s.

