06/16/22 Notes

Zhuo Zhang

June 16, 2022

1 Induced Representation

Let $\varphi: G \rightarrow G L(V)$ be a representation of G. Let H be a subgroup of G and let W be a subspace of V that is H-invariant. That is, $\varphi_{h}(W)=W$ for all $h \in H$. Denote by $\theta: H \rightarrow G L(W)$ the representation of H in W thus defined.

Consider $s \in G$, the subspace $\varphi_{s}(W)$ is completely determined by which coset of H contains s. This is so because if $s \equiv t(\bmod H)$, then $s=t h$ for some $h \in H$. Thus $\varphi_{s}(W)=\varphi_{t h}(W)=\varphi_{t} \varphi_{h}(W)=\varphi_{t}(W)$ because W is H-invariant. Let σ be a coset of H in G, then define W_{σ} to be $\varphi_{s}(W)$ for any $s \in \sigma$ (which is well defined as outlined above). It is clear that the W_{σ} are permuted among themselves by the φ_{g}, for any $g \in G$. Hence, the sum $\sum_{\sigma \in G / H} W_{\sigma}$ is a subrepresentation of G.

Definition 1.1. We say that the representation ρ of G in V is induced by the representation θ of H in W if V is equal to the sum of the $W_{\sigma}(\sigma \in G / H)$ and if that sum is direct. That is: $V=\underset{\sigma \in G / H}{\bigoplus} W_{\sigma}$.

This can be reformulated in several ways:

1. Each $x \in V$ can be written uniquely as $x=\sum_{\sigma \in G / H} x_{\sigma}$, with $x_{\sigma} \in W_{\sigma}$.
2. If R is a system of representatives of G / H, then V is the direct sum of $\varphi_{r}(W)$, with r ranging in R.

In particular, we have that

$$
\operatorname{dim}(V)=\sum_{r \in R} \operatorname{dim}\left(\varphi_{r}(W)\right)=[G: H] \operatorname{dim}(W)
$$

Remark 1.2. Here we list and explain several important facts/examples about induced representation.

1. Let $\rho: G \rightarrow G L(V)$ be the regular representation of G. Recall that V has basis $\left\{e_{t}\right\}_{t \in G}$ and $\rho_{s}\left(e_{t}\right)=$ $e_{s t}$. Let H be a subgroup of G and W is spanned by $\left\{e_{h}\right\}_{h \in H}$. We argue that the representation $\theta: H \rightarrow G L(W)$ induces ρ. First, let σ be a coset of H, then by definition $W_{\sigma}=\rho_{s}(W)$ for any $s \in \sigma$. Therefore, W_{σ} is spanned by $\left\{e_{s h}\right\}_{h \in H}=\left\{e_{t}\right\}_{t \in \sigma}$. Therefore, the bases of W_{σ} are disjoint and their union is the basis of V. Hence, $V=\underset{\sigma \in G / H}{\bigoplus} W_{\sigma}$ and ρ is induced by θ.
2. Let V be spanned by $\left\{e_{\sigma}\right\}_{\sigma \in G / H}$. Define ρ (or the action of G on V) by $\rho_{g}\left(e_{\sigma}\right)=e_{g \sigma}$. This is well defined because if $\sigma \in G / H$, so is $g \sigma$. Note that the vector e_{H} is invariant under H because $\rho_{h}\left(e_{H}\right)=e_{h H}=e_{H}$ for all $h \in H$. Define W to be the span of e_{H}, so $\theta: H \rightarrow G L(W)$ is a
representation of H. Under this definition, $W_{\sigma}=\operatorname{span}\left(\rho_{s}\left(e_{H}\right)\right)=\operatorname{span}\left(e_{s H}\right)=\operatorname{span}\left(e_{\sigma}\right)$ for any $s \in \sigma$. Thus, each W_{σ} has basis $\left\{e_{\sigma}\right\}$ and their disjoint union is the basis of V. Hence, $V=\bigoplus_{\sigma \in G / H} W_{\sigma}$ and ρ is induced by θ.
3. If $\rho^{(1)}$ is induced by $\theta^{(1)}$ and $\rho^{(2)}$ is induced by $\theta^{(2)}$, then $\rho^{(1)} \oplus \rho^{(2)}$ is induced by $\theta^{(1)} \oplus \theta^{(2)}$.
4. Let $\rho: G \rightarrow G L(V)$ be induced by $\theta: H \rightarrow G L(W)$. Now we find a subspace $W^{\prime} \subset W$ such that W^{\prime} is stable under H. By the discussions in section 2 , we know that

$$
V^{\prime}=\sum_{\sigma \in G / H} W_{\sigma}^{\prime}=\sum_{r \in R} \rho_{r}(W)
$$

is stable under G. The question is whether V^{\prime} is induced by W^{\prime}. We already know that the sum $V=\bigoplus_{\sigma \in G / H} W_{\sigma}$ is direct. Since $W^{\prime} \subset W$, we must have that $W_{\sigma}^{\prime}=\rho_{s}\left(W^{\prime}\right) \subset \rho_{s}(W)=W_{\sigma}$ (for any $s \in \sigma)$, so the sum $V^{\prime}=\underset{\sigma \in G / H}{\bigoplus} W_{\sigma}^{\prime}$ is also direct, and so the representation of G in V^{\prime} is induced by the representation of H in W^{\prime}.
5. If ρ is induced by θ, if ρ^{\prime} is a representation of G, and if ρ_{H}^{\prime} is the restriction of ρ^{\prime} to H, then $\rho \otimes \rho^{\prime}$ is induced by $\theta \otimes \rho_{H}^{\prime}$.
This can be reformulated as:

$$
\operatorname{Ind}_{H}^{G}\left(W \otimes_{\mathbb{C}} \operatorname{Res}_{H}^{G} V^{\prime}\right) \cong_{G} \operatorname{Ind}_{H}^{G} W \otimes_{\mathbb{C}} V^{\prime}
$$

2 Existence and Uniqueness of Induced Representation

Lemma 2.1. Suppose that (V, ρ) is induced by (W, θ). Let $\rho^{\prime}: G \rightarrow G L\left(V^{\prime}\right)$ be a linear representation of G, and let $f: W \rightarrow V^{\prime}$ be a linear map such that $f\left(\theta_{t} w\right)=\rho_{t}^{\prime} f(w)$ for all $t \in H$ and $w \in W$. Then there exists a unique linear map $F: V \rightarrow V^{\prime}$ which extends f and satisfies $F \circ \rho_{s}=\rho_{s}^{\prime} \circ F$ for all $s \in G$.

Proof. First assume that F exists. Suppose $x \in W_{\sigma}$ and pick any $s \in \sigma$, then $x \in \rho_{s}(W)$ and so $\rho_{s}^{-1}(x) \in W$. Thus,

$$
F(x)=\rho_{s}^{\prime} \circ F \circ \rho_{s}^{-1}(x)=\rho_{s}^{\prime} \circ f \circ \rho_{s}^{-1}(x)
$$

because F extends f on W. Therefore, the value of F on $x \in \rho_{s}(W)$ is determined. But since V is a direct sum of $\rho_{s}(W)$, where s ranges over a transversal of G / H, it follows that the value of F on V is determined. This proves the uniqueness of F. To prove that such a map exists, we shall define it to be this way. Suppose $x \in W_{\sigma}$ and pick any $s \in \sigma$, define $F(x)=\rho_{s}^{\prime} \circ f \circ \rho_{s}^{-1}(x)$. We need to verify two things: F is well-defined (doesn't depend on which $s \in \sigma$ we pick); F extends f and satisfies $F \circ \rho_{s}=\rho_{s}^{\prime} \circ F$ for all $s \in G$.

First, F doesn't depend on which $s \in \sigma$ we pick because, if we replace s by $s h$ for some $h \in H$, then

$$
\begin{aligned}
\rho_{s h}^{\prime} \circ f \circ \rho_{(s h)^{-1}}(x) & =\rho_{s}^{\prime} \rho_{h}^{\prime} \circ f \circ \theta_{h^{-1}} \rho_{s}^{-1}(x) \\
& =\rho_{s}^{\prime} \rho_{h}^{\prime} \rho_{h^{-1}}^{\prime} \circ f \circ \rho_{s}^{-1}(x) \\
& =\rho_{s}^{\prime} \circ f \circ \rho_{s}^{-1}(x) .
\end{aligned}
$$

F extends f obviously, because if $x \in W$, then the coset $\sigma=W$, so $s \in H$, and by the same reasoning above we know that $F(x)=f(x)$. Finally, $F \circ \rho_{s}=\rho_{s}^{\prime} \circ F$ holds for all $s \in G$. This is NOT by definition because x may not be in $W_{s H}$. However, suppose $x \in W_{\sigma}$, where $\sigma=t H$, then

$$
\rho_{s}^{\prime} \circ F(x)=\rho_{s}^{\prime} \rho_{t}^{\prime} \circ f \circ \rho_{t}^{-1}(x)
$$

On the other hand, since $x \in W_{t H}$, we have $\rho_{s}(x)=W_{s t H}$. Therefore,

$$
F \circ \rho_{s}(x)=\rho_{s t}^{\prime} \circ f \circ \rho_{(s t)^{-1}}\left(\rho_{s}(x)\right)=\rho_{s}^{\prime} \rho_{t}^{\prime} \circ f \circ \rho_{t}^{-1}(x)
$$

Therefore, $F \circ \rho_{s}=\rho_{s}^{\prime} \circ F$ holds for all $s \in G$.
Theorem 2.2. Let (W, θ) be a linear representation of H. There exists a linear representation (V, ρ) of G which is induced by (W, θ), and it is unique up to isomorphism.

Proof. Let us first prove the existence of the induced representation ρ. In view of example 3, above, we may assume that θ is irreducible (if not, then decompose θ into irreducibles and induct on each of them). In this case, θ is isomorphic to a subrepresentation of R_{H}, the regular representation of H, because

$$
R_{H} \cong d_{1} \varphi^{(1)} \oplus \cdots \oplus d_{k} \varphi^{(k)}
$$

where $\varphi^{(i)}, d_{i}$ are the irreducible representations and their dimensions. By example $1, R_{H}$ which can be induced to the regular representation of G. Applying example 4 , we conclude that θ itself can be induced.

Next, we show the uniqueness. Suppose (V, ρ) and $\left(V^{\prime}, \rho^{\prime}\right)$ are both induced by (W, θ). Let $i: W \rightarrow V^{\prime}$ be the natural inclusion map, then i is clearly an intertwiner. By Lemma 1 , there exists a unique intertwiner $F: V \rightarrow V^{\prime}$ that extends i, and it must be defined by

$$
F(x)=\rho_{s}^{\prime} \circ i \circ \rho_{s}^{-1}(x)=\rho_{s}^{\prime} \rho_{s}^{-1}(x) \quad \text { if } x \in W_{s H}
$$

Since $\rho_{s}^{-1}(x) \in W$, the image of F contains all $\rho_{s}^{\prime}(W)$, where s is in the transversal of G / H. Therefore, $\operatorname{im} F=V^{\prime}$, and F is thus an isomorphism since V and V^{\prime} have the same dimension.

3 Induced Characters

Since induced representation of $H \leq G$ is unique up to isomorphism, we should be able to determine its character uniquely from H. This is done in the next theorem.

Theorem 3.1. Let R be a system of representatives of G / H. For each $u \in G$, we have

$$
\chi_{\rho}(u)=\sum_{\substack{r \in R \\ r^{-1} u r \in H}} \chi_{\theta}\left(r^{-1} u r\right)=\frac{1}{|H|} \sum_{\substack{s \in G \\ s^{-1} u s \in H}} \chi_{\theta}\left(s^{-1} u s\right)
$$

Proof. V is the direct sum of $\rho_{r} W$, with r ranging in R. Consider the transformation ρ_{u} on each of these subspaces. Suppose $u r=r_{u} t$ with $t \in H$, then $\rho_{u}\left(\rho_{r} W\right)=\rho_{r_{u}} W$. To obtain a basis of V, take a basis from each $\rho_{r} W$ and take their (disjoint) union. If $r_{u} \neq r$, then $\rho_{u}\left(\rho_{r} W\right) \cap \rho_{r} W=\{0\}$, so the corresponding diagonal entries must be zero. If $r_{u}=r$, the trace of the corresponding small matrix is what we want. Thus,

$$
\chi_{\rho}(u)=\sum_{r \in R_{u}} \operatorname{tr}_{\rho_{r} W}\left(\rho_{u, r}\right),
$$

where R_{u} is the set of r such that $r_{u}=r$, and $\rho_{u, r}$ is the restriction of ρ_{u} to $\rho_{r} W$. Note that $r \in R_{u}$ if and only if $u r=r t$ for some $t \in H$, that is, $r^{-1} u r \in H$. Note that ρ_{r} defines an isomorphism between W and $\rho_{r} W$. Moreover, denote $t=r^{-1} u r \in H$, then

$$
\rho_{r} \circ \theta_{t}=\rho_{r} \circ \rho_{r^{-1} u r}=\rho_{u, r} \circ \rho_{r}
$$

Therefore, we have

$$
\operatorname{tr}_{\rho_{r} W}\left(\rho_{u, r}\right)=\operatorname{tr}_{\rho_{r} W}\left(\theta_{t}\right)=\chi_{\theta}(t)
$$

Hence,

$$
\chi_{\rho}(u)=\sum_{\substack{r \in R \\ r^{-1} u r \in H}} \chi_{\theta}\left(r^{-1} u r\right)
$$

The second formula follows because, if $s=r t$ for $t \in H$, then

$$
\chi_{\theta}\left(s^{-1} u s\right)=\chi_{\theta}\left(t^{-1} r^{-1} u r t\right)=\chi_{\theta}\left(r^{-1} u r\right)
$$

because χ_{θ} is a class function on H.
Remark 3.2. We provide another proof of the formula, which is similar to Serre's approach but is more straightforward and heuristic. For the sake of convenience, let $\left\{w_{1}, \cdots, w_{n}\right\}$ be a basis for W and let R be a transversal of the cosets G / H. The induced representation combines $|R|$ many copies of W, as stated in the definition:

$$
V=\bigoplus_{r \in R} \rho_{r} W
$$

Therefore, if ρ_{s} takes some w_{i} "outside" its original copy, the diagonal term must be zero. Now, let $u \in G$ be given. For a given space $\rho_{r} W$, in order that the space stays inside itself, we need $\rho_{u} \rho_{r} W=\rho_{r} W$. But this is true if and only if $u r$ and r are in the same left coset of H, i.e. $r^{-1} u r \in H$. We hence only need to consider those spaces. Suppose $\rho_{r} W$ is such a space, then its basis is $\left\{r w_{1}, \cdots, r w_{n}\right\}$. Since $r^{-1} u r \in H$, suppose $u r=r h$, then the new basis of this space is given by $\left\{u r w_{1}, \cdots, u r w_{n}\right\}=\left\{r\left(h w_{1}\right), \cdots, r\left(h w_{n}\right)\right\}$. Since $h \in H$, we already know what it does to w_{j} 's:

$$
h w_{j}=\sum_{i=1}^{n} M_{i j} w_{i} \quad \Rightarrow \quad r\left(h w_{j}\right)=\sum_{i=1}^{n} M_{i j}\left(r w_{i}\right)
$$

where M is the matrix of the transformation ρ_{h} on W. Hence, the action of ρ_{u} on $\rho_{r} W$ is given by the same matrix as the action of $\rho_{h}\left(=\theta_{h}\right)$ on W. Thus, they share the same trace, and we simply need to sum up the contribution of all such spaces $\rho_{r} W$ that contribute to the character:

$$
\chi_{\rho}(u)=\sum_{\substack{r \in R \\ r^{-1} u r \in H}} \chi_{\theta}(h)=\sum_{\substack{r \in R \\ r^{-1} u r \in H}} \chi_{\theta}\left(r^{-1} u r\right) .
$$

4 More on Induction

Recall the definition of induced representation. Let $H \leq G$, and let R be a system of representatives of G / H. Then (ρ, V) is said to be induced by (θ, W) if

$$
V=\bigoplus_{r \in R} \rho_{r} W \quad \Leftrightarrow \quad V=\bigoplus_{\sigma \in G / H} W_{\sigma}
$$

This property can be reformulated in the following way: Let

$$
W^{\prime}=\mathbb{C}[G] \otimes_{\mathbb{C}[H]} W
$$

be the $\mathbb{C}[G]$-module obtained from W by scalar extension from $\mathbb{C}[H]$ to $\mathbb{C}[G]$. Note that W^{\prime} has basis $\left\{r \otimes w_{i} \mid r \in R, w_{i} \in \beta(W)\right\}$, where $\beta(W)$ is a basis of W. Since $\mathbb{C}[H]$ are like the "scalars", a choice of coset representatives spans all of $\mathbb{C}[G]$ over $\mathbb{C}[H]$. Thus, the action of $\mathbb{C}[G]$ on W^{\prime} is defined by

$$
g \cdot(r \otimes w)=g r \otimes w
$$

where $r \in R$ and $g \in G$.
In this sense, the following statements become evident:

1. If V is induced by W and if E is a $\mathbb{C}[G]$-module, we have a canonical isomorphism

$$
\operatorname{Hom}^{H}(W, E) \cong \operatorname{Hom}^{G}(V, E)
$$

2. Induction is transitive: if G is a subgroup of a group K, we have

$$
\operatorname{Ind}_{G}^{K}\left(\operatorname{Ind}_{H}^{G}(W)\right) \cong \operatorname{Ind}_{H}^{K}(W)
$$

This can be seen directly, or by using the associativity of the tensor product.

