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1 Induced Representation

Let φ : G → GL(V ) be a representation of G. Let H be a subgroup of G and let W be a subspace of V that

is H-invariant. That is, φh(W ) = W for all h ∈ H. Denote by θ : H → GL(W ) the representation of H in

W thus defined.

Consider s ∈ G, the subspace φs(W ) is completely determined by which coset of H contains s. This is

so because if s ≡ t (mod H), then s = th for some h ∈ H. Thus φs(W ) = φth(W ) = φtφh(W ) = φt(W )

because W is H-invariant. Let σ be a coset of H in G, then define Wσ to be φs(W ) for any s ∈ σ (which is

well defined as outlined above). It is clear that the Wσ are permuted among themselves by the φg, for any

g ∈ G. Hence, the sum
∑

σ∈G/H

Wσ is a subrepresentation of G.

Definition 1.1. We say that the representation ρ of G in V is induced by the representation θ of H in W

if V is equal to the sum of the Wσ (σ ∈ G/H) and if that sum is direct. That is: V =
⊕

σ∈G/H

Wσ .

This can be reformulated in several ways:

1. Each x ∈ V can be written uniquely as x =
∑

σ∈G/H

xσ, with xσ ∈ Wσ.

2. If R is a system of representatives of G/H, then V is the direct sum of φr(W ), with r ranging in R.

In particular, we have that

dim(V ) =
∑
r∈R

dim (φr(W )) = [G : H] dim(W )

Remark 1.2. Here we list and explain several important facts/examples about induced representation.

1. Let ρ : G → GL(V ) be the regular representation of G. Recall that V has basis {et}t∈G and ρs(et) =

est. Let H be a subgroup of G and W is spanned by {eh}h∈H . We argue that the representation

θ : H → GL(W ) induces ρ. First, let σ be a coset of H, then by definition Wσ = ρs(W ) for any s ∈ σ.

Therefore, Wσ is spanned by {esh}h∈H = {et}t∈σ. Therefore, the bases of Wσ are disjoint and their

union is the basis of V . Hence, V =
⊕

σ∈G/H

Wσ and ρ is induced by θ.

2. Let V be spanned by {eσ}σ∈G/H . Define ρ (or the action of G on V ) by ρg(eσ) = egσ. This is

well defined because if σ ∈ G/H, so is gσ. Note that the vector eH is invariant under H because

ρh(eH) = ehH = eH for all h ∈ H. Define W to be the span of eH , so θ : H → GL(W ) is a
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representation of H. Under this definition, Wσ = span(ρs(eH)) = span(esH) = span(eσ) for any s ∈ σ.

Thus, each Wσ has basis {eσ} and their disjoint union is the basis of V . Hence, V =
⊕

σ∈G/H

Wσ and ρ

is induced by θ.

3. If ρ(1) is induced by θ(1) and ρ(2) is induced by θ(2), then ρ(1) ⊕ ρ(2) is induced by θ(1) ⊕ θ(2).

4. Let ρ : G → GL(V ) be induced by θ : H → GL(W ). Now we find a subspace W ′ ⊂ W such that W ′

is stable under H. By the discussions in section 2, we know that

V ′ =
∑

σ∈G/H

W ′
σ =

∑
r∈R

ρr(W )

is stable under G. The question is whether V ′ is induced by W ′. We already know that the sum

V =
⊕

σ∈G/H

Wσ is direct. Since W ′ ⊂ W , we must have that W ′
σ = ρs(W

′) ⊂ ρs(W ) = Wσ (for any

s ∈ σ), so the sum V ′ =
⊕

σ∈G/H

W ′
σ is also direct, and so the representation of G in V ′ is induced by

the representation of H in W ′.

5. If ρ is induced by θ, if ρ′ is a representation of G, and if ρ′H is the restriction of ρ′ to H, then ρ⊗ ρ′ is

induced by θ ⊗ ρ′H .

This can be reformulated as:

IndGH
(
W ⊗C ResGH V ′) ∼=G IndGH W ⊗C V ′.

2 Existence and Uniqueness of Induced Representation

Lemma 2.1. Suppose that (V, ρ) is induced by (W, θ). Let ρ′ : G → GL (V ′) be a linear representation of

G, and let f : W → V ′ be a linear map such that f (θtw) = ρ′tf(w) for all t ∈ H and w ∈ W . Then there

exists a unique linear map F : V → V ′ which extends f and satisfies F ◦ ρs = ρ′s ◦ F for all s ∈ G.

Proof. First assume that F exists. Suppose x ∈ Wσ and pick any s ∈ σ, then x ∈ ρs(W ) and so ρ−1
s (x) ∈ W .

Thus,

F (x) = ρ′s ◦ F ◦ ρ−1
s (x) = ρ′s ◦ f ◦ ρ−1

s (x),

because F extends f on W . Therefore, the value of F on x ∈ ρs(W ) is determined. But since V is a direct

sum of ρs(W ), where s ranges over a transversal of G/H, it follows that the value of F on V is determined.

This proves the uniqueness of F . To prove that such a map exists, we shall define it to be this way. Suppose

x ∈ Wσ and pick any s ∈ σ, define F (x) = ρ′s ◦ f ◦ ρ−1
s (x). We need to verify two things: F is well-defined

(doesn’t depend on which s ∈ σ we pick); F extends f and satisfies F ◦ ρs = ρ′s ◦ F for all s ∈ G.

First, F doesn’t depend on which s ∈ σ we pick because, if we replace s by sh for some h ∈ H, then

ρ′sh ◦ f ◦ ρ(sh)−1(x) = ρ′sρ
′
h ◦ f ◦ θh−1ρ−1

s (x)

= ρ′sρ
′
hρ

′
h−1 ◦ f ◦ ρ−1

s (x)

= ρ′s ◦ f ◦ ρ−1
s (x).
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F extends f obviously, because if x ∈ W , then the coset σ = W , so s ∈ H, and by the same reasoning

above we know that F (x) = f(x). Finally, F ◦ ρs = ρ′s ◦ F holds for all s ∈ G. This is NOT by definition

because x may not be in WsH . However, suppose x ∈ Wσ, where σ = tH, then

ρ′s ◦ F (x) = ρ′sρ
′
t ◦ f ◦ ρ−1

t (x).

On the other hand, since x ∈ WtH , we have ρs(x) = WstH . Therefore,

F ◦ ρs(x) = ρ′st ◦ f ◦ ρ(st)−1(ρs(x)) = ρ′sρ
′
t ◦ f ◦ ρ−1

t (x).

Therefore, F ◦ ρs = ρ′s ◦ F holds for all s ∈ G.

Theorem 2.2. Let (W, θ) be a linear representation of H. There exists a linear representation (V, ρ) of G

which is induced by (W, θ), and it is unique up to isomorphism.

Proof. Let us first prove the existence of the induced representation ρ. In view of example 3, above, we may

assume that θ is irreducible (if not, then decompose θ into irreducibles and induct on each of them). In this

case, θ is isomorphic to a subrepresentation of RH , the regular representation of H, because

RH
∼= d1φ

(1) ⊕ · · · ⊕ dkφ
(k)

where φ(i), di are the irreducible representations and their dimensions. By example 1, RH which can be

induced to the regular representation of G. Applying example 4, we conclude that θ itself can be induced.

Next, we show the uniqueness. Suppose (V, ρ) and (V ′, ρ′) are both induced by (W, θ). Let i : W → V ′

be the natural inclusion map, then i is clearly an intertwiner. By Lemma 1, there exists a unique intertwiner

F : V → V ′ that extends i, and it must be defined by

F (x) = ρ′s ◦ i ◦ ρ−1
s (x) = ρ′sρ

−1
s (x) if x ∈ WsH .

Since ρ−1
s (x) ∈ W , the image of F contains all ρ′s(W ), where s is in the transversal of G/H. Therefore,

imF = V ′, and F is thus an isomorphism since V and V ′ have the same dimension.

3 Induced Characters

Since induced representation of H ≤ G is unique up to isomorphism, we should be able to determine its

character uniquely from H. This is done in the next theorem.

Theorem 3.1. Let R be a system of representatives of G/H. For each u ∈ G, we have

χρ(u) =
∑
r∈R

r−1ur∈H

χθ(r
−1ur) =

1

|H|
∑
s∈G

s−1us∈H

χθ(s
−1us)

Proof. V is the direct sum of ρrW , with r ranging in R. Consider the transformation ρu on each of these

subspaces. Suppose ur = rut with t ∈ H, then ρu(ρrW ) = ρruW . To obtain a basis of V , take a basis

from each ρrW and take their (disjoint) union. If ru ̸= r, then ρu(ρrW )∩ ρrW = {0}, so the corresponding

diagonal entries must be zero. If ru = r, the trace of the corresponding small matrix is what we want. Thus,

χρ(u) =
∑
r∈Ru

trρrW (ρu,r),
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where Ru is the set of r such that ru = r, and ρu,r is the restriction of ρu to ρrW . Note that r ∈ Ru if and

only if ur = rt for some t ∈ H, that is, r−1ur ∈ H. Note that ρr defines an isomorphism between W and

ρrW . Moreover, denote t = r−1ur ∈ H, then

ρr ◦ θt = ρr ◦ ρr−1ur = ρu,r ◦ ρr

Therefore, we have

trρrW (ρu,r) = trρrW (θt) = χθ(t)

Hence,

χρ(u) =
∑
r∈R

r−1ur∈H

χθ

(
r−1ur

)
The second formula follows because, if s = rt for t ∈ H, then

χθ

(
s−1us

)
= χθ

(
t−1r−1urt

)
= χθ

(
r−1ur

)
because χθ is a class function on H.

Remark 3.2. We provide another proof of the formula, which is similar to Serre’s approach but is more

straightforward and heuristic. For the sake of convenience, let {w1, · · · , wn} be a basis for W and let R be

a transversal of the cosets G/H. The induced representation combines |R| many copies of W , as stated in

the definition:

V =
⊕
r∈R

ρrW.

Therefore, if ρs takes some wi “outside” its original copy, the diagonal term must be zero. Now, let u ∈ G

be given. For a given space ρrW , in order that the space stays inside itself, we need ρuρrW = ρrW . But

this is true if and only if ur and r are in the same left coset of H, i.e. r−1ur ∈ H. We hence only need to

consider those spaces. Suppose ρrW is such a space, then its basis is {rw1, · · · , rwn}. Since r−1ur ∈ H,

suppose ur = rh, then the new basis of this space is given by {urw1, · · · , urwn} = {r(hw1), · · · , r(hwn)}.
Since h ∈ H, we already know what it does to wj ’s:

hwj =

n∑
i=1

Mijwi ⇒ r(hwj) =

n∑
i=1

Mij(rwi),

where M is the matrix of the transformation ρh on W . Hence, the action of ρu on ρrW is given by the same

matrix as the action of ρh(= θh) on W . Thus, they share the same trace, and we simply need to sum up the

contribution of all such spaces ρrW that contribute to the character:

χρ(u) =
∑
r∈R

r−1ur∈H

χθ(h) =
∑
r∈R

r−1ur∈H

χθ

(
r−1ur

)
.

4 More on Induction

Recall the definition of induced representation. Let H ≤ G, and let R be a system of representatives of

G/H. Then (ρ, V ) is said to be induced by (θ,W ) if

V =
⊕
r∈R

ρrW ⇔ V =
⊕

σ∈G/H

Wσ
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This property can be reformulated in the following way: Let

W ′ = C[G]⊗C[H] W

be the C[G]-module obtained from W by scalar extension from C[H] to C[G]. Note that W ′ has basis

{r ⊗ wi | r ∈ R,wi ∈ β(W )}, where β(W ) is a basis of W . Since C[H] are like the “scalars”, a choice of

coset representatives spans all of C[G] over C[H]. Thus, the action of C[G] on W ′ is defined by

g · (r ⊗ w) = gr ⊗ w,

where r ∈ R and g ∈ G.

In this sense, the following statements become evident:

1. If V is induced by W and if E is a C[G]-module, we have a canonical isomorphism

HomH(W,E) ∼= HomG(V,E)

2. Induction is transitive: if G is a subgroup of a group K, we have

IndKG

(
IndGH(W )

)
∼= IndKH(W ).

This can be seen directly, or by using the associativity of the tensor product.
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