
06/13/22 Notes

Zhuo Zhang and Dylan Roscow

June 13, 2022

1 Tensor Square Decomposition

Let V be a vector space. Define an endomorphism T of V ⊗ V as follows:

T : V ⊗ V −→ V ⊗ V

v ⊗ w 7−→ w ⊗ v.

It is an involution (it is its own inverse), and so is an automorphism (self-isomorphism) of V ⊗ V . Define

two subsets of the second tensor power of V ,

Sym2(V ) := {v ∈ V ⊗ V | T (v) = v}

Alt2(V ) := {v ∈ V ⊗ V | T (v) = −v}

These are the symmetric square and the alternating square of V, V ∧ V , respectively. The symmetric and

alternating squares are also known as the symmetric part and antisymmetric part of the tensor product.

Since each tensor can be written as

x⊗ y =
x⊗ y + y ⊗ x

2
+

x⊗ y − y ⊗ x

2
,

and also Sym2(V ) ∩ Alt2(V ) = {0}, we have that the second tensor power of a linear representation V of a

group G decomposes as the direct sum of the symmetric and alternating squares:

V ⊗2 ∼= Sym2(V )⊕Alt2(V )

as representations. In particular, both are subrepresenations of the second tensor power. In the language

of modules over the group ring, the symmetric and alternating squares are C[G]-submodules of V ⊗ V .

If V has a basis {e1, e2, . . . , en}, then the symmetric square has a basis {ei ⊗ ej + ej ⊗ ei | 1 ≤ i ≤ j ≤ n}
and the alternating square has a basis {ei ⊗ ej − ej ⊗ ei | 1 ≤ i < j ≤ n}. Accordingly,

dimSym2(V ) =
n(n+ 1)

2
,

dimAlt2(V ) =
n(n− 1)

2
.

More generally, one can define the Symk(V ) ⊂ V ⊗k as the subspace consisting of all vectors in V ⊗k that

are invariant under all permutations of k symbols in Sk. Thus, it’s easy to see that

dimSymk(V ) =

(
n+ k − 1

k

)
.

1



Then define

Sym(V ) :=

∞⊕
k=0

Symk(V ).

Thus, Sym(V ) is a vector subspace of T (V ). Moreover Sym(V ) is isomorphic as vector space to S(V )

over characteristic zero fields. However, S(V ) has a product structure and thus this isomorphism is not an

algebra isomorphism. Let πk be the restriction to Symk(V ) of the canonical surjection T k(V ) → Sk(V ). If

k! has an inverse in the ground field (or ring), then πk is an isomorphism. This is always the case with a

ground field of characteristic zero. Moreover, the inverse of this isomorphism is given by

π−1
k (vi1 · · · vik) =

1

k!

∑
σ∈Sk

vσ(i1) ⊗ . . . vσ(ik).

In summary, over a field of characteristic zero, the symmetric tensors and the symmetric algebra form two

isomorphic graded vector spaces. They can thus be identified as far as only the vector space structure is

concerned, but they cannot be identified as soon as products are involved.

2 Extension of Scalars and Induced Representation

2.1 Basic Ideas

Let R,S be rings. Suppose that M is a right R-module, and we have a ring homomorphism f : R → S.

It’s easy to turn S-modules into R-modules using the homomorphism. Now we consider how to turn M

into an S-module. Because of the homomorphism f , we may regard S as a left R-module. (In fact, S is

a module over itself, so it’s an (R,S)-module because the two actions commute). Therefore, we form the

tensor product:

MS = M ⊗R S.

The (right) action of S on MS is given by:

(m⊗ s) ∗ s′ = m⊗ (ss′).

It’s easy to check the module axioms for MS . Associativity often causes confusion, so we check that here:

(m⊗ s) ∗ s1s2 = m⊗ ss1s2 = (m⊗ ss1) ∗ s2 = ((m⊗ s) ∗ s1) ∗ s2.

In summary, the extension of scalars is the tensor product of an R-module with an (R,S)-bimodule, which

yields an S-module. We could also change our assumption to change the directions of all actions. If we do

that, then M is a left R-module, while S is an (S,R)-bimodule, and S ⊗R M is a left S module.

2.2 Application to Induced Representation

Suppose we have groups H ≤ G and an C[H]-module W . We wish to find a representation of G that is

naturally induced by W . In this case, R = C[H] and S = C[G], and therefore, using the extension of scalars

method discussed above, we define the induced representation to be

IndGH(W ) = C[G]⊗C[H] W

From the categorical perspective, induction is a functor from C[H]-modules to C[G]-modules, while restriction

is the opposite. This will be discussed more in the next section.

2



3 More on Category Theory

First, recall the definition of a functor:

Definition 3.1 (Functor). A functor is a mapping between categories C and D which sends an object X in

C to an object F (X) in D and sends a morphism F : X → Y to a morphism F (f) : F (X) → F (Y ), satisfying

the following properties:

1. For every object X, we have: F (idX) = idF (X)

2. For all morphisms f : X → Y and g : Y → Z, we have: F (g ◦ f) = F (g) ◦ F (f)

Example 3.2. For any category C there is the identity functor IdC : C → C that sends each object and

morphism to itself.

Example 3.3. Let ModR be the category of modules over a ring R.

Then, IndGH : ModC[H] → ModC[G] and ResGH : ModC[G] → ModC[H] are both functors.

Here, restriction acts trivially on equivariant maps since every G-equivariant maps is also H-equivariant.

Induction acts on an equivariant map f : V → W by: (IndGH f) : x⊗ v 7→ x⊗ f(v)

Proof. Restriction does not change the underlying module, so ResGH(idV ) = idV = idResGH V , and it satisfies

the identity condition. And we have by definition: (IndGH idV ) : x ⊗ v 7→ x ⊗ v so induction satisfies the

identity condition.

Restriction trivially preserves composition. For induction, we have:

(IndGH(g ◦ f))(x⊗ v) = x⊗ g(f(v)) = (IndGH g ◦ IndGH f)(x⊗ v)

Therefore, IndGH and ResGH are both functors.

We define the following notion of a natural transformation as an equivalence between functors.

Definition 3.4 (Natural Transformation). A natural transformation η : F → G between functors F : C → D
and G : C → D maps each object X ∈ C to a morphism ηX : F (X) → G(X) such that for any morphism

f : X → Y in C, we have: ηY ◦ F (f) = G(f) ◦ ηX .

This can be summarized with the following commutative diagram:

F (X) G(X)

F (Y ) G(Y )

ηX

ηY

F (f) G(f)

A natural isomorphism is a natural transformation where each ηX is an isomorphism in D.

Definition 3.5 (Isomorphic Categories). Two categories C and D are isomorphic if there is are two functors

F : C → D and G : D → C such that FG = IdD and GF = IdC .

The notion of isomorphic categories tends to be too strong for most applications, so it is more common to

use an equivalence of categories, where we replace the equality of the two functors with natural isomorphisms.

3



Definition 3.6 (Equivalence of Categories). Two categories C and D are equivalent if there are two functors

F : C → D G : D → C such that both FG and IdD and also GF and IdC are naturally isomorphic.

It is easy to see that the equivalence of categories acts like an equivalence relation. This is equivalent to

an alternate definition that there is an essentially surjective functor F : C → D such that the induced map

HomC(C1, C2) → HomD(F (C1), F (C2)) is a bijection.

The following is some background for the definition of an adjunction between categories.

Definition 3.7 (Opposite Category). The opposite category Cop of a category C is the category consisting

of the same objects as C, but with the hom-classes reversed, so that HomCop(X,Y ) = HomC(Y,X).

Each identity morphism stays the same and composition is given by: f ◦Cop g = g◦C f . Opposite categories

are related to the notion of a contravariant functor:

Definition 3.8 (Contravariant Functor). A contravariant functor is a mapping between categories C and

D which sends an object X in C to an object F (X) in D and sends a morphism F : X → Y to a morphism

F (f) : F (Y ) → F (X), satisfying the following properties:

1. For every object X, we have: F (idX) = idF (X)

2. For all morphisms f : X → Y and g : Y → Z, we have: F (g ◦ f) = F (f) ◦ F (g).

This is an unfortunate naming convention because contravariant functors are NOT actually functors.

However, they can be uniquely identified either with a functor G : Cop → D or a functor H : C → Dop since

HomCop(X,Y ) = HomC(Y,X) and HomDop(F (X), F (Y )) = HomD(F (Y ), F (X)).

Definition 3.9 (Product Category). Given two categories C and D, the product category C × D is the

category whose objects are of the form (C,D) for objects C ∈ C and D ∈ D and whose morphisms

Hom((C1, D1), (C2, D2)) are of the form (f, g) for morphisms f : C1 → C2 and g : D1 → D2.

Composition and identities are as one would expect:

(f1, g1) ◦ (f2, g2) = (f1 ◦ f2, g1 ◦ g2)

id(X,Y ) = (idX , idY )

Example 3.10. If F : D → C and G : C → D are functors between (locally small) categories C and D, then

HomC(F−,−) and HomD(−, G−) are both functors Dop × C → Set. Where they act on a morphism (f, g)

by HomC(Ff, g) : h 7→ g ◦ h ◦ F (f) and HomD(f,Gg) : h 7→ G(g) ◦ h ◦ f .

Proof. First, for any object (D,C) ∈ Dop × C, the identity morphism is (idD, idC). So, we have:

HomC(F idD, idC)(h) = idC ◦h ◦ F (idD) = idC ◦h ◦ idF (D) = h

HomD(idD, G idC)(h) = G(idC) ◦ h ◦ idD = idG(C) ◦h ◦ idD = h

4



Now, for any two morphisms (f1, f2) : (X1, X2) → (Y1, Y2) and (g1, g2) : (Y1, Y2) → (Z1, Z2), we have:

HomC(F (g1 ◦ f1), g2 ◦ f2)(h) = g2 ◦ f2 ◦ h ◦ F (g1 ◦ f1)

= g2 ◦ f2 ◦ h ◦ F (f1) ◦ F (g1)

= HomC(Fg1, g2)(HomC(Ff1, f2)(h))

HomD(g1 ◦ f1, G(g2 ◦ f2))(h) = G(g2 ◦ f2) ◦ h ◦ g1 ◦ f1

= f2 ◦ g2 ◦ h ◦ g1 ◦ f1

= HomD(f1, Gf2)(HomD(f1, Gf2)(h))

Note that the composition in Dop leads to a reversed order of composition in some of the above.

Definition 3.11 (Adjunction). An adjunction between the (locally small) categories C and D is a pair of

functors F : D → C and G : C → D such that HomC(F−,−) and HomD(−, G−) are naturally isomorphic.

In this case, F is called the left-adjoint and G is called the right-adjoint.

Now, for our canonical example of an adjunction:

Example 3.12. For groups G and H with H ≤ G and finite index, IndGH and ResGH form an adjunction.

That HomC[G](Ind
G
H −,−) and HomC[H](−,ResGH −) are naturally isomorphic can be seen as a categori-

fication of Frobenius Reciprocity, which is: if G and H are finite groups and H ≤ G and we have an

H-character χ and a G-character φ, then:(
IndGH χ

∣∣∣φ)
G
=
(
χ
∣∣∣ResGH φ

)
H

5


