06/03/22 Notes

Casey Appleton and Dylan Chiu

June 3, 2022

1 Graded Rings, Modules, and Algebras

Definition 1.1. A graded ring R is a ring $R = \bigoplus_{n \ge 0} R_n$, where the R_n are abelian groups under the ring's addition operation, such that the ring's multiplication operation is a bilinear map $\cdot : R_m \times R_n \to R_{m+n}, \forall n, m \in \mathbb{Z}_{\ge 0}$

Definition 1.2. A graded module M over a graded ring R is a left R-module $M = \bigoplus_{n\geq 0} M_n$ where the M_n are abelian and such that scalar multiplication is a bilinear map $: R_n \times M_m \to M_{n+m}, \forall n, m \in \mathbb{Z}_{\geq 0}$.

Remark 1.3. Since associativity of the ring's multiplication operation was not used in the above definitions, these definitions are still valid for non-associative algebras over a field. Additionally, M being a left R-module is an arbitrary choice, and one could define what it means for right R-modules to be graded in a similar way.

Remark 1.4. R_0 is a subring of R.

Definition 1.5. A homomorphism of graded modules, is a homomorphism of *R*-modules $f : N \to M$ such that $\forall i \in \mathbb{Z}_{\geq 0}, f(N_i) \subseteq M_i$.

Definition 1.6. Let M be a graded R-module, and N be submodule of M. Then we say N is a graded submodule of M if the inclusion map $N \hookrightarrow M$ is a homomorphism of graded modules, or equivalently, if $\forall i \in \mathbb{Z}_{\geq 0}, N_i \subseteq M_i$

Proposition 1.7. Let N be a (not necessarily graded) submodule of a graded R-module, M. Then $\bigoplus_{n\geq 1} N \cap M_i$ is a graded R-submodule of M.

Proof. This can shown in a straightforward way by simply unraveling the definitions and checking that the conditions for being a graded R-submodule of M are satisfied.

Example 1.8. Any graded ring *R* is graded as an *R*-module.

Example 1.9. T(V) is a graded associative \mathbb{K} -algebra, where V is a vector space over \mathbb{K} . That is, it is an associative algebra over \mathbb{K} that is graded when considered as a ring.

Definition 1.10. A two-sided ideal I of a graded ring R is a homogeneous ideal if it is a graded R-submodule of R. Equivalently, I is a homogeneous ideal of R if it can be generated by elements of $\bigcup_{n>0} R_n \cap I$.

Proposition 1.11. Let R be a graded ring, and let I be homogeneous ideal of R. Then $R/I = \bigoplus_{n\geq 0} R_n/(R_n \cap I)$ is a graded ring.

Proof. Let $I_i := R_i \cap I$, $(R/I)_i := R_i/I_i$. Then we see that since $I_i \subseteq R_i$ are abelian groups, $(R/I)_i$ must be as well. Furthermore, $\forall r_i \in R_i, r_j \in R_j$, we have $(r_i + I_i) \cdot (r_j + I_j) = (r_i \cdot r_j + r_iI_j + I_ir_j + I_iI_j) \subseteq$ $r_i \cdot r_j + I_{i+j} \in (R/I)_{i+j}$. The equality between R/I and the direct sum of the $(R/I)_n$ follows immediately from the definition of the quotient of a ring by an ideal and the fact that R and I are both equal to the direct sum of their graded pieces, R_n and $R_n \cap I$ respectively.

Definition 1.12. Let V be a graded K-algebra such that $\forall i \in \mathbb{Z}_{n \geq 0}$, $\dim_{\mathbb{K}} V_n$ is finite. Then the Hilbert-Poincare series is defined as the formal power series $\operatorname{HP}(V) := \sum_{n \geq 0} (\dim_{\mathbb{K}} V_n) q^n$.

Example 1.13. Let V be an n-dimensional vector space over K. Then since $V^{\otimes k}$ has dimension n^k , we have $HP(T(V)) = \frac{1}{1-ng}$.

2 The Symmetric Algebra, S(V)

Definition 2.1. Let T(V) be the tensor algebra of a finite dimensional vector space V over a field K, and let I be the two-sided ideal of T(V) generated by $\{x \otimes y - y \otimes x : x, y \in V\}$. Then we say the symmetric algebra of V is S(V) := T(V)/I.

Remark 2.2. S(V) can be thought of as a coordinate free polynomial ring, since if we fix a basis, $v_1, ..., v_n$, we see S(V) is isomorphic to the polynomial ring $\mathbb{K}[v_1, ..., v_n]$.

Proposition 2.3. S(V) is a graded \mathbb{K} -Algebra.

Proof. From Proposition 1.11, it suffices to check that I is a homogeneous ideal of the tensor algebra $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$. Indeed, I is generated by $\{x \otimes y - y \otimes x : x, y \in V\} \subseteq V^{\otimes 2}$, which concludes the proof. \Box

Remark 2.4. The elements of $S(V^*)$ can be thought of as polynomial functions on the vector space V, since one can fix a basis $x_1, ..., x_n$ of V^* , express a given element p_V of $S(V^*)$ as a polynomial p in the x_i , and define $p_V(v) := p(x_1(v), ..., x_n(v))$.

Remark 2.5. From Remark 2.2 and Proposition 2.3, we see that if V is an n-dimensional vector space over \mathbb{K} the dimension of $S^k(V)$ is the number of degree k monomials in n variables, which from the method of stars and bars from enumerative combinatorics, can be shown to be $\binom{n+k-1}{k-1}$.

Combining this with the negative-binomial theorem, one obtains

Corollary 2.6. $HP(S(V)) = \frac{1}{(1-q)^n}$

3 The Exterior Algebra

Definition 3.1. Let T(V) be the tensor algebra of a finite dimensional vector space V over a field \mathbb{K} , and I be the two-sided ideal of T(V) generated by the set $\{x \otimes x | x \in V\}$. The exterior algebra of V is $\bigwedge(V) := T(V)/I$. For $v, w \in T(V)$, we call $v \wedge w = [v \otimes w]$ the wedge product of v and w. Note that the wedge product is anti-commutative.

$$0 = (v + w) \land (v + w)$$
$$= v \land v + v \land w + w \land v + w \land w$$
$$= v \land w + w \land v$$

Corollary 3.2 (Sign Property). From this, one can see that $\forall \pi \in S_k, v_1, ..., v_k \in V$, we have $v_{\pi(1)} \land ... \land v_{\pi(n)} = \operatorname{sgn}(\pi)v_1 \land ... \land v_k$, where $\operatorname{sgn}(\pi)$ is the sign of the permutation π .

Proposition 3.3. $\bigwedge(V)$ is a graded algebra.

Proof. The ideal I as defined above is generated by $\{x \otimes x : x \in V\} \subseteq V^{\otimes 2}$, so it is a homogeneous ideal of T(V), and so the claim follows from Proposition 1.11

Proposition 3.4. If V is a n-dimensional vector space, the dimension of $\bigwedge^k(V)$ is $\binom{n}{k}$.

Proof. Fix a basis $e_1, ..., e_n$ of V. Then one can use linearity and the sign property to show that any wedge product of k vectors in V decomposes into a linear combination of wedge products of k of the e_i . Furthermore this spanning set for $\bigwedge^k(V)$ is linearly independent, since if $e_{i_1}, ..., e_{i_k}$ were equal to a linear combination of the other basis elements in $\bigwedge^k(V)$, then taking the wedge product on both sides with the element of $\bigwedge^{n-k}(V)$ given by the wedge product of all the other basis vectors, we would have the equality $e_1 \land ... \land e_n = 0$ in $\bigwedge(V)$, which is false. We see that each of these basis elements can can be uniquely specified by a subset of k of the e_i , so the size of basis is $\binom{n}{k}$.

Corollary 3.5. The Hilbert-Poincare series of $\bigwedge(V)$ is $(1+q)^n$

Proof. $HP(\Lambda(V)) = \sum_{i=0}^{n} {n \choose m} q^{n}$. Then use the binomial theorem.

Remark 3.6. From the method used in the proof above to show that the wedge products of k of the basis vectors $e_1, ..., e_n$ are linearly independent, one can also show that after fixing a basis for V, one there is a canonical isomorphism between $\bigwedge^k(V)^*$ and $\bigwedge^{n-k}(V)$.

Remark 3.7. If V is a n-dimensional K-vector space, and $x \in \bigwedge(V)$, then x looks like linear combinations of $v = v_1 \land v_2 \land \ldots \land v_k$ for $v_i \in V$. If k > n then v = 0.

Proof. If k > n then the set $\{v_1, \ldots, v_k\}$ is linearly dependent. In particular $v_1 = \sum_{i=2}^k a_i v_i$ for $a_i \in \mathbb{K}$. Then $v = (a_2v_2 + \ldots a_kv_k) \land v_2 \land \ldots \land v_k = 0$

Now suppose $T: V \to V$ is a linear map. Then T induces a map $T_k: V^{\otimes k} \to V^{\otimes k}$ where $T_k(v_1 \otimes v_2 \otimes \ldots \otimes v_k) = T(v_1) \otimes T(v_2) \otimes \ldots \otimes T(v_k)$. Taking the direct sum over all k, we see that T induces a graded K-algebra endomorphism of T(V). Furthermore, if I is homogeneous ideal of T(V) that is closed under the action of this endomorphism of T(V), then this passes to an induced endomorphism $T'_k: V^{\otimes n}/I_k \to V^{\otimes n}/I_k$.

Example 3.8. If we take I to be the ideal we used to define the exterior algebra, and additionally take k = n, then $\bigwedge^k(V)$ is one dimensional. So $T'_n(v) = dv$ for some scalar d. We call d the determinant of T. This gives us a coordinate-free description of the determinant since at no point did we have to discuss a particular basis.

Example 3.9. From Remark 3.5 above, it also follows that any linear map $T : V \to V$ induces a map $T' : S^k(V) \to S^k(V)$, which can be seen as a coordinate-free way of defining the polynomial representations $\operatorname{Sym}^k(\mathbb{K}^n)$.

Remark 3.10. As it turns out, if V is an inner product space of dimension n over a field K, then the inner product on V induces an inner product on $\bigwedge^k(V)$. This allows one to prove higher dimensional generalizations of the pythagorean theorem, such as De Gua's Theorem.