06/03/22 Notes

Casey Appleton and Dylan Chiu

June 3, 2022

1 Graded Rings, Modules, and Algebras

Definition 1.1. A graded ring R is a ring $R=\bigoplus_{n \geq 0} R_{n}$, where the R_{n} are abelian groups under the ring's addition operation, such that the ring's multiplication operation is a bilinear map $\cdot: R_{m} \times R_{n} \rightarrow$ $R_{m+n}, \forall n, m \in \mathbb{Z}_{\geq 0}$

Definition 1.2. A graded module M over a graded ring R is a left R-module $M=\bigoplus_{n \geq 0} M_{n}$ where the M_{n} are abelian and such that scalar multiplication is a bilinear map $\cdot: R_{n} \times M_{m} \rightarrow M_{n+m}, \forall n, m \in \mathbb{Z}_{\geq 0}$.

Remark 1.3. Since associativity of the ring's multiplication operation was not used in the above definitions, these definitions are still valid for non-associative algebras over a field. Additionally, M being a left R-module is an arbitrary choice, and one could define what it means for right R-modules to be graded in a similar way.

Remark 1.4. R_{0} is a subring of R.
Definition 1.5. A homomorphism of graded modules, is a homomorphism of R-modules $f: N \rightarrow M$ such that $\forall i \in \mathbb{Z}_{\geq 0}, f\left(N_{i}\right) \subseteq M_{i}$.

Definition 1.6. Let M be a graded R-module, and N be submodule of M. Then we say N is a graded submodule of M if the inclusion map $N \hookrightarrow M$ is a homomorphism of graded modules, or equivalently, if $\forall i \in \mathbb{Z}_{\geq 0}, N_{i} \subseteq M_{i}$

Proposition 1.7. Let N be a (not necessarily graded) submodule of a graded R-module, M. Then $\bigoplus_{n \geq 1} N \cap M_{i}$ is a graded R-submodule of M.

Proof. This can shown in a straightforward way by simply unraveling the definitions and checking that the conditions for being a graded R-submodule of M are satisfied.

Example 1.8. Any graded ring R is graded as an R-module.
Example 1.9. $\mathrm{T}(V)$ is a graded associative \mathbb{K}-algebra, where V is a vector space over \mathbb{K}. That is, it is an associative algebra over \mathbb{K} that is graded when considered as a ring.

Definition 1.10. A two-sided ideal I of a graded ring R is a homogeneous ideal if it is a graded R-submodule of R. Equivalently, I is a homogeneous ideal of R if it can be generated by elements of $\bigcup_{n \geq 0} R_{n} \cap I$.

Proposition 1.11. Let R be a graded ring, and let I be homogeneous ideal of R. Then $R / I=\bigoplus_{n \geq 0} R_{n} /\left(R_{n} \cap I\right)$ is a graded ring.

Proof. Let $I_{i}:=R_{i} \cap I,(R / I)_{i}:=R_{i} / I_{i}$. Then we see that since $I_{i} \subseteq R_{i}$ are abelian groups, $(R / I)_{i}$ must be as well. Furthermore, $\forall r_{i} \in R_{i}, r_{j} \in R_{j}$, we have $\left(r_{i}+I_{i}\right) \cdot\left(r_{j}+I_{j}\right)=\left(r_{i} \cdot r_{j}+r_{i} I_{j}+I_{i} r_{j}+I_{i} I_{j}\right) \subseteq$ $r_{i} \cdot r_{j}+I_{i+j} \in(R / I)_{i+j}$. The equality between R / I and the direct sum of the $(R / I)_{n}$ follows immediately from the definition of the quotient of a ring by an ideal and the fact that R and I are both equal to the direct sum of their graded pieces, R_{n} and $R_{n} \cap I$ respectively.

Definition 1.12. Let V be a graded \mathbb{K}-algebra such that $\forall i \in \mathbb{Z}_{n \geq 0}, \operatorname{dim}_{\mathbb{K}} V_{n}$ is finite. Then the HilbertPoincare series is defined as the formal power series $\operatorname{HP}(V):=\sum_{n \geq 0}\left(\operatorname{dim}_{\mathbb{K}} V_{n}\right) q^{n}$.
Example 1.13. Let V be an n-dimensional vector space over \mathbb{K}. Then since $V^{\otimes k}$ has dimension n^{k}, we have $\operatorname{HP}(\mathrm{T}(V))=\frac{1}{1-n q}$.

2 The Symmetric Algebra, S(V)

Definition 2.1. Let $\mathrm{T}(V)$ be the tensor algebra of a finite dimensional vector space V over a field \mathbb{K}, and let I be the two-sided ideal of $\mathrm{T}(V)$ generated by $\{x \otimes y-y \otimes x: x, y \in V\}$. Then we say the symmetric algebra of V is $\mathrm{S}(V):=\mathrm{T}(V) / I$.

Remark 2.2. $\mathrm{S}(V)$ can be thought of as a coordinate free polynomial ring, since if we fix a basis, v_{1}, \ldots, v_{n}, we see $\mathrm{S}(V)$ is isomorphic to the polynomial ring $\mathbb{K}\left[v_{1}, \ldots, v_{n}\right]$.
Proposition 2.3. $\mathrm{S}(V)$ is a graded \mathbb{K}-Algebra.
Proof. From Proposition 1.11, it suffices to check that I is a homogeneous ideal of the tensor algebra $\mathrm{T}(V):=$ $\bigoplus_{n \geq 0} V^{\otimes n}$. Indeed, I is generated by $\{x \otimes y-y \otimes x: x, y \in V\} \subseteq V^{\otimes 2}$, which concludes the proof.

Remark 2.4. The elements of $\mathrm{S}\left(V^{*}\right)$ can be thought of as polynomial functions on the vector space V, since one can fix a basis $x_{1}, \ldots x_{n}$ of V^{*}, express a given element p_{V} of $\mathrm{S}(V *)$ as a polynomial p in the x_{i}, and define $p_{V}(v):=p\left(x_{1}(v), \ldots, x_{n}(v)\right)$.

Remark 2.5. From Remark 2.2 and Proposition 2.3, we see that if V is an n-dimensional vector space over \mathbb{K} the dimension of $\mathrm{S}^{k}(V)$ is the number of degree k monomials in n variables, which from the method of stars and bars from enumerative combinatorics, can be shown to be $\binom{n+k-1}{k-1}$.

Combining this with the negative-binomial theorem, one obtains
Corollary 2.6. $\operatorname{HP}(\mathrm{S}(V))=\frac{1}{(1-q)^{n}}$

3 The Exterior Algebra

Definition 3.1. Let $\mathrm{T}(V)$ be the tensor algebra of a finite dimensional vector space V over a field \mathbb{K}, and I be the two-sided ideal of $\mathrm{T}(V)$ generated by the set $\{x \otimes x \mid x \in V\}$. The exterior algebra of V is $\bigwedge(V):=\mathrm{T}(V) / I$. For $v, w \in T(V)$, we call $v \wedge w=[v \otimes w]$ the wedge product of v and w. Note that the wedge product is anti-commutative.

$$
\begin{aligned}
0 & =(v+w) \wedge(v+w) \\
& =v \wedge v+v \wedge w+w \wedge v+w \wedge w \\
& =v \wedge w+w \wedge v
\end{aligned}
$$

Corollary 3.2 (Sign Property). From this, one can see that $\forall \pi \in S_{k}, v_{1}, \ldots, v_{k} \in V$, we have $v_{\pi(1)} \wedge \ldots \wedge$ $v_{\pi(n)}=\operatorname{sgn}(\pi) v_{1} \wedge \ldots \wedge v_{k}$, where $\operatorname{sgn}(\pi)$ is the sign of the permutation π.

Proposition 3.3. $\bigwedge(V)$ is a graded algebra.
Proof. The ideal I as defined above is generated by $\{x \otimes x: x \in V\} \subseteq V^{\otimes 2}$, so it is a homogeneous ideal of $\mathrm{T}(V)$, and so the claim follows from Proposition 1.11

Proposition 3.4. If V is a n-dimensional vector space, the dimension of $\bigwedge^{k}(V)$ is $\binom{n}{k}$.
Proof. Fix a basis e_{1}, \ldots, e_{n} of V. Then one can use linearity and the sign property to show that any wedge product of k vectors in V decomposes into a linear combination of wedge products of k of the e_{i}. Furthermore this spanning set for $\bigwedge^{k}(V)$ is linearly independent, since if $e_{i_{1}}, \ldots, e_{i_{k}}$ were equal to a linear combination of the other basis elements in $\bigwedge^{k}(V)$, then taking the wedge product on both sides with the element of $\bigwedge^{n-k}(V)$ given by the wedge product of all the other basis vectors, we would have the equality $e_{1} \wedge \ldots \wedge e_{n}=0$ in $\bigwedge(V)$, which is false. We see that each of these basis elements can can be uniquely specified by a subset of k of the e_{i}, so the size of basis is $\binom{n}{k}$.

Corollary 3.5. The Hilbert-Poincare series of $\bigwedge(V)$ is $(1+q)^{n}$
Proof. $H P(\bigwedge(V))=\sum_{i=0}^{n}\binom{n}{m} q^{n}$. Then use the binomial theorem.
Remark 3.6. From the method used in the proof above to show that the wedge products of k of the basis vectors e_{1}, \ldots, e_{n} are linearly independent, one can also show that after fixing a basis for V, one there is a canonical isomorphism between $\bigwedge^{k}(V)^{*}$ and $\bigwedge^{n-k}(V)$.

Remark 3.7. If V is a n-dimensional \mathbb{K}-vector space, and $x \in \Lambda(V)$, then x looks like linear combinations of $v=v_{1} \wedge v_{2} \wedge \ldots \wedge v_{k}$ for $v_{i} \in V$. If $k>n$ then $v=0$.

Proof. If $k>n$ then the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly dependent. In particular $v_{1}=\sum_{i=2}^{k} a_{i} v_{i}$ for $a_{i} \in \mathbb{K}$. Then $v=\left(a_{2} v_{2}+\ldots a_{k} v_{k}\right) \wedge v_{2} \wedge \ldots \wedge v_{k}=0$

Now suppose $T: V \rightarrow V$ is a linear map. Then T induces a map $T_{k}: V^{\otimes k} \rightarrow V^{\otimes k}$ where $T_{k}\left(v_{1} \otimes v_{2} \otimes\right.$ $\left.\ldots \otimes v_{k}\right)=T\left(v_{1}\right) \otimes T\left(v_{2}\right) \otimes \ldots \otimes T\left(v_{k}\right)$. Taking the direct sum over all k , we see that T induces a graded K-algebra endomorphism of $T(V)$. Furthermore, if I is homogeneous ideal of $\mathrm{T}(V)$ that is closed under the action of this endomorphism of $\mathrm{T}(V)$, then this passes to an induced endomorphism $T_{k}^{\prime}: V^{\otimes n} / I_{k} \rightarrow V^{\otimes n} / I_{k}$.

Example 3.8. If we take I to be the ideal we used to define the exterior algebra, and additionally take $k=n$, then $\bigwedge^{k}(V)$ is one dimensional. So $T_{n}^{\prime}(v)=d v$ for some scalar d. We call d the determinant of T. This gives us a coordinate-free description of the determinant since at no point did we have to discuss a particular basis.

Example 3.9. From Remark 3.5 above, it also follows that any linear map $T: V \rightarrow V$ induces a map $T^{\prime}: \mathrm{S}^{k}(V) \rightarrow \mathrm{S}^{k}(V)$, which can be seen as a coordinate-free way of defining the polynomial representations $\operatorname{Sym}^{k}\left(\mathbb{K}^{n}\right)$.

Remark 3.10. As it turns out, if V is an inner product space of dimension n over a field K, then the inner product on V induces an inner product on $\Lambda^{k}(V)$. This allows one to prove higher dimensional generalizations of the pythagorean theorem, such as De Gua's Theorem.

