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1 Graded Rings, Modules, and Algebras

Definition 1.1. A graded ring R is a ring R =
⊕

n≥0 Rn, where the Rn are abelian groups under the

ring’s addition operation, such that the ring’s multiplication operation is a bilinear map · : Rm × Rn →
Rm+n,∀n,m ∈ Z≥0

Definition 1.2. A graded module M over a graded ring R is a left R-module M =
⊕

n≥0 Mn where the

Mn are abelian and such that scalar multiplication is a bilinear map · : Rn ×Mm → Mn+m,∀n,m ∈ Z≥0.

Remark 1.3. Since associativity of the ring’s multiplication operation was not used in the above definitions,

these definitions are still valid for non-associative algebras over a field. Additionally, M being a left R-module

is an arbitrary choice, and one could define what it means for right R-modules to be graded in a similar way.

Remark 1.4. R0 is a subring of R.

Definition 1.5. A homomorphism of graded modules, is a homomorphism of R-modules f : N → M such

that ∀i ∈ Z≥0, f(Ni) ⊆ Mi.

Definition 1.6. Let M be a graded R-module, and N be submodule of M . Then we say N is a graded

submodule of M if the inclusion map N ↪→ M is a homomorphism of graded modules, or equivalently, if

∀i ∈ Z≥0, Ni ⊆ Mi

Proposition 1.7. Let N be a (not necessarily graded) submodule of a graded R-module, M . Then
⊕

n≥1 N ∩Mi

is a graded R-submodule of M .

Proof. This can shown in a straightforward way by simply unraveling the definitions and checking that the

conditions for being a graded R-submodule of M are satisfied.

Example 1.8. Any graded ring R is graded as an R-module.

Example 1.9. T(V ) is a graded associative K-algebra, where V is a vector space over K. That is, it is an

associative algebra over K that is graded when considered as a ring.

Definition 1.10. A two-sided ideal I of a graded ring R is a homogeneous ideal if it is a graded R-submodule

of R. Equivalently, I is a homogeneous ideal of R if it can be generated by elements of
⋃

n≥0 Rn ∩ I.

Proposition 1.11. Let R be a graded ring, and let I be homogeneous ideal of R. Then R/I =
⊕

n≥0 Rn/(Rn ∩ I)

is a graded ring.
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Proof. Let Ii := Ri ∩ I, (R/I)i := Ri/Ii. Then we see that since Ii ⊆ Ri are abelian groups, (R/I)i must

be as well. Furthermore, ∀ri ∈ Ri, rj ∈ Rj , we have (ri + Ii) · (rj + Ij) = (ri · rj + riIj + Iirj + IiIj) ⊆
ri · rj + Ii+j ∈ (R/I)i+j . The equality between R/I and the direct sum of the (R/I)n follows immediately

from the definition of the quotient of a ring by an ideal and the fact that R and I are both equal to the

direct sum of their graded pieces, Rn and Rn ∩ I respectively.

Definition 1.12. Let V be a graded K-algebra such that ∀i ∈ Zn≥0,dimK Vn is finite. Then the Hilbert-

Poincare series is defined as the formal power series HP(V ) :=
∑

n≥0 (dimK Vn)q
n.

Example 1.13. Let V be an n-dimensional vector space over K. Then since V ⊗k has dimension nk, we

have HP(T(V )) = 1
1−nq .

2 The Symmetric Algebra, S(V)

Definition 2.1. Let T(V ) be the tensor algebra of a finite dimensional vector space V over a field K, and

let I be the two-sided ideal of T(V ) generated by {x ⊗ y − y ⊗ x : x, y ∈ V }. Then we say the symmetric

algebra of V is S(V ) := T(V )/I.

Remark 2.2. S(V ) can be thought of as a coordinate free polynomial ring, since if we fix a basis, v1, ..., vn,

we see S(V ) is isomorphic to the polynomial ring K[v1, ..., vn].

Proposition 2.3. S(V ) is a graded K-Algebra.

Proof. From Proposition 1.11, it suffices to check that I is a homogeneous ideal of the tensor algebra T(V ) :=⊕
n≥0 V

⊗n. Indeed, I is generated by {x⊗ y − y ⊗ x : x, y ∈ V } ⊆ V ⊗2, which concludes the proof.

Remark 2.4. The elements of S(V ∗) can be thought of as polynomial functions on the vector space V ,

since one can fix a basis x1, ...xn of V ∗, express a given element pV of S(V ∗) as a polynomial p in the xi,

and define pV (v) := p(x1(v), ..., xn(v)).

Remark 2.5. From Remark 2.2 and Proposition 2.3, we see that if V is an n-dimensional vector space over

K the dimension of Sk(V ) is the number of degree k monomials in n variables, which from the method of

stars and bars from enumerative combinatorics, can be shown to be
(
n+k−1
k−1

)
.

Combining this with the negative-binomial theorem, one obtains

Corollary 2.6. HP(S(V )) = 1
(1−q)n

3 The Exterior Algebra

Definition 3.1. Let T(V ) be the tensor algebra of a finite dimensional vector space V over a field K,

and I be the two-sided ideal of T(V ) generated by the set {x ⊗ x|x ∈ V }. The exterior algebra of V is∧
(V ) := T(V )/I. For v, w ∈ T (V ), we call v ∧ w = [v ⊗ w] the wedge product of v and w. Note that the

wedge product is anti-commutative.

0 = (v + w) ∧ (v + w)

= v ∧ v + v ∧ w + w ∧ v + w ∧ w

= v ∧ w + w ∧ v
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Corollary 3.2 (Sign Property). From this, one can see that ∀π ∈ Sk, v1, ..., vk ∈ V , we have vπ(1) ∧ ... ∧
vπ(n) = sgn(π)v1 ∧ ... ∧ vk, where sgn(π) is the sign of the permutation π.

Proposition 3.3.
∧
(V ) is a graded algebra.

Proof. The ideal I as defined above is generated by {x⊗ x : x ∈ V } ⊆ V ⊗2, so it is a homogeneous ideal of

T(V ), and so the claim follows from Proposition 1.11

Proposition 3.4. If V is a n-dimensional vector space, the dimension of
∧k

(V ) is
(
n
k

)
.

Proof. Fix a basis e1, ..., en of V . Then one can use linearity and the sign property to show that any wedge

product of k vectors in V decomposes into a linear combination of wedge products of k of the ei. Furthermore

this spanning set for
∧k

(V ) is linearly independent, since if ei1 , ..., eik were equal to a linear combination of

the other basis elements in
∧k

(V ), then taking the wedge product on both sides with the element of
∧n−k

(V )

given by the wedge product of all the other basis vectors, we would have the equality e1 ∧ ... ∧ en = 0 in∧
(V ), which is false. We see that each of these basis elements can can be uniquely specified by a subset of

k of the ei, so the size of basis is
(
n
k

)
.

Corollary 3.5. The Hilbert-Poincare series of
∧
(V ) is (1 + q)n

Proof. HP (
∧
(V )) =

∑n
i=0

(
n
m

)
qn. Then use the binomial theorem.

Remark 3.6. From the method used in the proof above to show that the wedge products of k of the basis

vectors e1, ..., en are linearly independent, one can also show that after fixing a basis for V , one there is a

canonical isomorphism between
∧k

(V )
∗
and

∧n−k
(V ).

Remark 3.7. If V is a n-dimensional K-vector space, and x ∈
∧
(V ), then x looks like linear combinations

of v = v1 ∧ v2 ∧ . . . ∧ vk for vi ∈ V . If k > n then v = 0.

Proof. If k > n then the set {v1, . . . , vk} is linearly dependent. In particular v1 =
∑k

i=2 aivi for ai ∈ K.

Then v = (a2v2 + . . . akvk) ∧ v2 ∧ . . . ∧ vk = 0

Now suppose T : V → V is a linear map. Then T induces a map Tk : V ⊗k → V ⊗k where Tk(v1 ⊗ v2 ⊗
. . . ⊗ vk) = T (v1) ⊗ T (v2) ⊗ . . . ⊗ T (vk). Taking the direct sum over all k, we see that T induces a graded

K-algebra endomorphism of T (V ). Furthermore, if I is homogeneous ideal of T(V ) that is closed under the

action of this endomorphism of T(V ), then this passes to an induced endomorphism T ′
k : V ⊗n/Ik → V ⊗n/Ik.

Example 3.8. If we take I to be the ideal we used to define the exterior algebra, and additionally take

k = n, then
∧k

(V ) is one dimensional. So T ′
n(v) = dv for some scalar d. We call d the determinant of T .

This gives us a coordinate-free description of the determinant since at no point did we have to discuss a

particular basis.

Example 3.9. From Remark 3.5 above, it also follows that any linear map T : V → V induces a map

T ′ : Sk(V ) → Sk(V ), which can be seen as a coordinate-free way of defining the polynomial representations

Symk(Kn).

Remark 3.10. As it turns out, if V is an inner product space of dimension n over a field K, then the

inner product on V induces an inner product on
∧k

(V ). This allows one to prove higher dimensional

generalizations of the pythagorean theorem, such as De Gua’s Theorem.
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