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1 Graded Rings, Modules, and Algebras

Definition 1.1. A graded ring R is a ring R = @, Rn, where the R, are abelian groups under the
ring’s addition operation, such that the ring’s multiplication operation is a bilinear map - : R,, X R, —

Rm+n7 \V/TL, m e Zzo

Definition 1.2. A graded module M over a graded ring R is a left R-module M = ®n20 M,, where the

M, are abelian and such that scalar multiplication is a bilinear map - : R,, X My, = Mp4m,Vn,m € Z>q.

Remark 1.3. Since associativity of the ring’s multiplication operation was not used in the above definitions,
these definitions are still valid for non-associative algebras over a field. Additionally, M being a left R-module

is an arbitrary choice, and one could define what it means for right R-modules to be graded in a similar way.
Remark 1.4. Ry is a subring of R.

Definition 1.5. A homomorphism of graded modules, is a homomorphism of R-modules f: N — M such
that Vi € 2207 f(Nz) C M,;.

Definition 1.6. Let M be a graded R-module, and N be submodule of M. Then we say N is a graded
submodule of M if the inclusion map N < M is a homomorphism of graded modules, or equivalently, if
Vi € ZZOvNi C M;

Proposition 1.7. Let N be a (not necessarily graded) submodule of a graded R-module, M. Then @n21 NN M;
is a graded R-submodule of M.

Proof. This can shown in a straightforward way by simply unraveling the definitions and checking that the

conditions for being a graded R-submodule of M are satisfied. O
Example 1.8. Any graded ring R is graded as an R-module.

Example 1.9. T(V) is a graded associative K-algebra, where V is a vector space over K. That is, it is an

associative algebra over K that is graded when considered as a ring.

Definition 1.10. A two-sided ideal I of a graded ring R is a homogeneous ideal if it is a graded R-submodule
of R. Equivalently, I is a homogeneous ideal of R if it can be generated by elements of UnZO R,NI.

Proposition 1.11. Let R be a graded ring, and let I be homogeneous ideal of R. Then R/ = €D,,5q Ryn/(Rn N 1)

is a graded ring.



Proof. Let I; := R; N1, (R/I); := R;/I;. Then we see that since I; C R; are abelian groups, (R/I); must
be as well. Furthermore, Vr; € R;,7; € R;, we have (r; + I;) - (r; + I;) = (r; -7 + ril; + Liry + L1;) C
ri-1rj+ Iiy; € (R/I)i+;. The equality between R/I and the direct sum of the (R/I),, follows immediately
from the definition of the quotient of a ring by an ideal and the fact that R and I are both equal to the
direct sum of their graded pieces, R,, and R, N I respectively. O

Definition 1.12. Let V' be a graded K-algebra such that Vi € Z,,>¢,dimg V,, is finite. Then the Hilbert-
Poincare series is defined as the formal power series HP(V) := 3" - (dimxk Vi,)g".

Example 1.13. Let V be an n-dimensional vector space over K. Then since V®* has dimension n*, we

have HP(T(V)) = —

1—-ngqg"

2 The Symmetric Algebra, S(V)

Definition 2.1. Let T(V') be the tensor algebra of a finite dimensional vector space V over a field K, and
let I be the two-sided ideal of T(V) generated by {z @ y —y ® x : z,y € V}. Then we say the symmetric
algebra of V is S(V) := T(V)/I.

Remark 2.2. S(V) can be thought of as a coordinate free polynomial ring, since if we fix a basis, vy, ..., vp,

we see S(V) is isomorphic to the polynomial ring K[vy, ..., v,].
Proposition 2.3. S(V) is a graded K-Algebra.

Proof. From Proposition 1.11, it suffices to check that I is a homogeneous ideal of the tensor algebra T(V) :=
®D..>0 V®n_ Indeed, I is generated by {z @y —y®@x : 2,y € V} C V®2 which concludes the proof. O

Remark 2.4. The elements of S(V*) can be thought of as polynomial functions on the vector space V,
since one can fix a basis x1, ...z, of V*, express a given element py of S(Vx) as a polynomial p in the z;,

and define py (v) := p(z1(v), ..., n (V).

Remark 2.5. From Remark 2.2 and Proposition 2.3, we see that if V' is an n-dimensional vector space over

K the dimension of S*(V) is the number of degree k& monomials in n variables, which from the method of

stars and bars from enumerative combinatorics, can be shown to be ("Zﬁ;l)
Combining this with the negative-binomial theorem, one obtains

Corollary 2.6. HP(S(V)) = (1—1q)"

3 The Exterior Algebra

Definition 3.1. Let T(V) be the tensor algebra of a finite dimensional vector space V over a field K,
and I be the two-sided ideal of T(V) generated by the set {z ® x|z € V}. The exterior algebra of V is
A(V) :=T(V)/I. For v,w € T(V), we call v Aw = [v ® w] the wedge product of v and w. Note that the
wedge product is anti-commutative.
0=@w+w)A (v+w)
=vAvt+vAwtwAv+wAw

=vAw+wAv



Corollary 3.2 (Sign Property). From this, one can see that Vr € Sy, v1,...,v, € V, we have V(1) A e A

Ur(n) = sgn(m)v1 A ... A vy, where sgn(r) is the sign of the permutation .
Proposition 3.3. A(V) is a graded algebra.

Proof. The ideal I as defined above is generated by {r @ x : # € V} C V®2, 50 it is a homogeneous ideal of
T(V), and so the claim follows from Proposition 1.11 O

Proposition 3.4. If V is a n-dimensional vector space, the dimension of \*(V) is (0)-

Proof. Fix a basis ey, ..., e, of V. Then one can use linearity and the sign property to show that any wedge
product of k vectors in V' decomposes into a linear combination of wedge products of k of the e;. Furthermore
this spanning set for /\k(V) is linearly independent, since if e;,, ..., €;, were equal to a linear combination of
the other basis elements in A"(V), then taking the wedge product on both sides with the element of A" " (V)
given by the wedge product of all the other basis vectors, we would have the equality e; A ... Ae, = 0 in
A(V), which is false. We see that each of these basis elements can can be uniquely specified by a subset of

k of the e;, so the size of basis is (Z) O

Corollary 3.5. The Hilbert-Poincare series of A\(V') is (14 q)"
Proof. HP(A\(V)) = Y1, (™)¢". Then use the binomial theorem. O

Remark 3.6. From the method used in the proof above to show that the wedge products of k of the basis
vectors ey, ..., e, are linearly independent, one can also show that after fixing a basis for V', one there is a

canonical isomorphism between /\k(V)* and \" (V).

Remark 3.7. If V is a n-dimensional K-vector space, and € A(V), then x looks like linear combinations

ofv=vi Ava A... ANv for v; € V. If k > n then v = 0.

Proof. If k > n then the set {v1,...,vx} is linearly dependent. In particular v; = Zf=2 a;v; for a; € K.
Then v = (agva + ... agvE) Ava A ... Avp =0 O

Now suppose T : V — V is a linear map. Then T induces a map Ty : V& — V& where Ty (v; ® vo ®
o ®ug) =T(v1) @ T(v2) ® ... ® T(vg). Taking the direct sum over all k, we see that T" induces a graded
K-algebra endomorphism of T'(V'). Furthermore, if I is homogeneous ideal of T(V) that is closed under the
action of this endomorphism of T(V'), then this passes to an induced endomorphism T}, : V&™ /I, — V& /.

Example 3.8. If we take I to be the ideal we used to define the exterior algebra, and additionally take
k = n, then A"(V) is one dimensional. So T'.(v) = dv for some scalar d. We call d the determinant of 7.
This gives us a coordinate-free description of the determinant since at no point did we have to discuss a

particular basis.

Example 3.9. From Remark 3.5 above, it also follows that any linear map 7' : V' — V induces a map
T : S*(V) — S*(V), which can be seen as a coordinate-free way of defining the polynomial representations
Sym” (K™).

Remark 3.10. As it turns out, if V' is an inner product space of dimension n over a field K, then the
inner product on V induces an inner product on /\k(V) This allows one to prove higher dimensional

generalizations of the pythagorean theorem, such as De Gua’s Theorem.



