05/23/22 Notes

Zhuo Zhang and Dylan Chiu

May 23, 2022

- Next meeting time: 10am on Tuesday at AH347

1 Representations of $(\mathbb{Z},+)$

Proposition 1.1. Let $\varphi: \mathbb{Z} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ be a representation of $(\mathbb{Z},+)$. Then φ is equivalent to the representation ρ defined by $\rho_{n}=J_{\varphi_{1}}^{n}$, where J_{M} denotes the Jordan canonical form of a matrix M, which is unique up to reordering the Jordan blocks.

Proof. Let A denote φ_{1}, the image of 1 under φ. Then φ must be $\varphi_{k}=A^{k}$ because 1 generates \mathbb{Z}. Note that φ is indeed a representation because $\varphi_{n+m}=A^{n+m}=A^{n} A^{m}=\varphi_{n} \varphi_{m}$, assuming A is invertible. Next, observe that because J_{A} is similar to A, there exists $T \in \mathrm{GL}_{n}(\mathbb{C})$ such that $T J_{A} T^{-1}=A$, and so

$$
\left(T J_{A} T^{-1}\right)^{n}=T J_{A}^{n} T^{-1}=A^{n} \quad \Rightarrow \quad T \rho_{n} T^{-1}=\varphi_{n} \quad \forall n \in \mathbb{Z}
$$

which proves that $\varphi \sim \rho$.
Remark. In fact, J_{M} can be substituted by any matrix similar to M, but the Jordan canonical form is, in some sense, the "most diagonal" one.

2 Dual Representation

Definition 2.1. For a vector space V over F, we define the dual space of V to be the vector space $\operatorname{Hom}(V, F)$, denoted by V^{*}.

Theorem 2.2. Let V and W be finite-dimensional vector spaces over F with ordered bases β and γ, respectively. For any linear transformation $L: V \rightarrow W$, the mapping $L^{\top}: W^{*} \rightarrow V^{*}$ defined by $L^{\top}(g)=g L$ for all $g \in W^{*}$ is a linear transformation with the property that $\left[L^{\top}\right]_{\gamma^{*}}^{\beta^{*}}=\left([L]_{\beta}^{\gamma}\right)^{\top}$.
Theorem 2.3. Let $\varphi: G \rightarrow \mathrm{GL}(V)$ be a representation of G. Then there is a corresponding representation of G, defined by: $\varphi_{g}^{*}=\left(\varphi_{g^{-1}}\right)^{\top}$.

Proof. For the sake of convenience, we're only dealing with matrices here. Theorem 2.2 provides a better way to understand the "transpose" of a linear map. Now, it suffices to show that $\varphi_{g h}^{*}=\varphi_{g}^{*} \varphi_{h}^{*}$. This is so because

$$
\varphi_{g h}^{*}=\left(\varphi_{(g h)^{-1}}\right)^{\top}=\left(\varphi_{h^{-1} g^{-1}}\right)^{\top}=\left(\varphi_{g^{-1}}\right)^{\top}\left(\varphi_{h^{-1}}\right)^{\top}=\varphi_{g}^{*} \varphi_{h}^{*}
$$

which concludes the proof.

3 Character Theory

In this section we will only consider finite groups.
Definition 3.1 (Character). For a group G, the character of a group representation $f: G \rightarrow \mathrm{GL}(V)$ is defined as $\chi_{f}: G \rightarrow \mathbb{C}$ where $\chi_{f}(g)=\operatorname{Tr}\left(f_{g}\right)$.

Definition 3.2. The kernel of a character χ_{f} is the set $\left\{g \in G \mid \chi_{f}(g)=\chi_{f}(1)\right\}$.
Definition 3.3. The degree of a character χ_{f} is $\operatorname{deg}(f)$.
Definition 3.4. A character χ_{f} is irreducible if f is irreducible.
We now list some facts about the character of a finite group.
Theorem 3.5. $\chi_{f}(1)=\operatorname{deg}(f)$
Proof. By definition, $\chi_{f}(1)=\operatorname{Tr}(f(1))=\operatorname{Tr}\left(I_{V}\right)=\operatorname{dim}(V)=\operatorname{deg}(f)$
Theorem 3.6 (Weyl's Unitarian Trick). All linear representations of a finite group are equivalent to unitary representations.

Proof. We want to find a change of basis and an inner product such that our linear maps become unitary. Over $V=\mathbb{C}^{n}$ we have the standard inner product or the dot product. This product is bad for representation theory though since $f(g)$ is not an isometry. i.e $\langle v, w\rangle \neq\langle g \cdot v, g \cdot w\rangle$. Our fix is to define a new inner product

$$
\langle v, w\rangle^{\prime}:=\frac{1}{|G|} \sum_{g \in G}\langle g \cdot v, g \cdot w\rangle
$$

We can check that this is a valid inner product and is G-invariant. i.e it satisfies conjugate symmetry, linearity in the first argument, positive definiteness and definition 3.3.

$$
\begin{gathered}
\langle v, w\rangle^{\prime}=\frac{1}{|G|} \sum_{g \in G}\langle g \cdot v, g \cdot w\rangle \\
=\frac{1}{|G|} \sum_{g \in G} \overline{\langle g \cdot w, g \cdot v\rangle} \\
=\overline{\langle w, v\rangle^{\prime}} \\
\langle a v+b u, w\rangle^{\prime}= \\
=\frac{1}{|G|} \sum_{g \in G}\langle g \cdot(a v+b u), g \cdot w\rangle \\
=\frac{1}{|G|} \sum_{g \in G}\langle g \cdot(a v), g \cdot w\rangle+\langle g \cdot(b u), g \cdot w\rangle \\
=a\langle v, w\rangle^{\prime}+b\langle u, w\rangle^{\prime} \\
\langle g \cdot v, g \cdot w\rangle+\frac{b}{|G|} \sum_{g \in G}\langle g \cdot u, g \cdot w\rangle \\
\langle v, v\rangle^{\prime}=\frac{1}{|G|} \sum_{g \in G}\langle g \cdot v, g \cdot v\rangle \geq 0 \text { with equality } \Longleftrightarrow g \cdot v=0, \forall g \in G \Longleftrightarrow v=0
\end{gathered}
$$

$$
\begin{aligned}
\langle h \cdot v, h \cdot w\rangle^{\prime} & =\frac{1}{|G|} \sum_{g \in G}\langle h g \cdot v, h g \cdot w\rangle \\
& =\frac{1}{|G|} \sum_{g^{\prime} \in G}\left\langle g^{\prime} \cdot v, g^{\prime} \cdot w\right\rangle(\text { note } h g \text { simply reorders the elements since G is a finite group) } \\
& =\langle v, w\rangle^{\prime}
\end{aligned}
$$

Now that we have a suitable inner product, we can perform the Gram-Schmidt process on any basis of V to produce an orthonormal basis. Let $\beta=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis and call this o.n.b $\gamma=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Now we can let $Q=\left[I_{V}\right]_{\gamma}^{\beta}$, then the claim is that $Q^{-1}\left[f_{g}\right]_{\beta} Q$ is a unitary matrix, where f_{g} is written with respect to the standard basis. This is true because,

$$
Q^{-1}\left[f_{g}\right]_{\beta} Q=\left[I_{V}\right]_{\beta}^{\gamma}\left[f_{g}\right]_{\beta}\left[I_{V}\right]_{\gamma}^{\beta}=\left[f_{g}\right]_{\gamma}
$$

but γ is an orthonormal basis with respect to our newly defined inner product, and f is also unitary with respect to that inner product, so $\left[f_{g}\right]_{\gamma}$ must be a unitary matrix.

Theorem 3.7. $\chi_{f}\left(s^{-1}\right)=\overline{\chi_{f}(s)}$.
Proof. $\overline{\chi_{f}(s)}=\overline{\operatorname{Tr}(f(s))}$. Using fact 2 and the fact that all unitary matrices are diagonalizable, $\overline{\operatorname{Tr}(f(s))}=$ $\sum_{j=1}^{n} \overline{\lambda_{j}}$. The eigenvalues of a unitary operator satisfy $|\lambda|=1$ or equivalently $\lambda \in U(1)$.

$$
\overline{\lambda_{j}}=a_{j}-b_{j} i=\frac{a_{j}-b_{j} i}{a^{2}+b^{2}}=\frac{1}{a_{j}+b_{j} i}=\lambda_{j}^{-1}
$$

. Therefore,

$$
\overline{\operatorname{Tr}(f(s))}=\sum_{j=1}^{n} \frac{1}{\lambda_{j}}=\chi_{f}\left(s^{-1}\right)
$$

Theorem 3.8. $\chi_{f}\left(t s t^{-1}\right)=\chi(s)$.
Proof. By definition,

$$
\chi_{f}\left(h g h^{-1}\right)=\operatorname{Tr}\left(f\left(h g h^{-1}\right)\right)=\operatorname{Tr}\left(f(h) f(g) f\left(h^{-1}\right)\right)=\operatorname{Tr}\left(f\left(h^{-1}\right) f(h) f(g)\right)=\operatorname{Tr}(f(g))=\chi_{f}(g),
$$

where we used the fact that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
Definition 3.9 (Conjugacy class). The conjugacy classes of a group G are the set of equivalence classes formed by the equivalence relation $a \sim b \Longleftrightarrow \exists g \in G, a=g^{-1} b g$

Definition 3.10 (Class function). A class function is a function that is constant on the conjugacy classes of G.

Fact 4 asserts that the character of a representation is a class function. In fact, the irreducible characters form an orthonormal basis of the vector space of class functions of G under the following inner product.

$$
\langle\alpha, \beta\rangle=\frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\beta(g)}
$$

