05/23/22 Notes

Zhuo Zhang and Dylan Chiu

May 23, 2022

• Next meeting time: 10am on Tuesday at AH347

1 Representations of $(\mathbb{Z}, +)$

Proposition 1.1. Let $\varphi : \mathbb{Z} \to \operatorname{GL}_n(\mathbb{C})$ be a representation of $(\mathbb{Z}, +)$. Then φ is equivalent to the representation ρ defined by $\rho_n = J_{\varphi_1}^n$, where J_M denotes the Jordan canonical form of a matrix M, which is unique up to reordering the Jordan blocks.

Proof. Let A denote φ_1 , the image of 1 under φ . Then φ must be $\varphi_k = A^k$ because 1 generates \mathbb{Z} . Note that φ is indeed a representation because $\varphi_{n+m} = A^{n+m} = A^n A^m = \varphi_n \varphi_m$, assuming A is invertible. Next, observe that because J_A is similar to A, there exists $T \in \operatorname{GL}_n(\mathbb{C})$ such that $TJ_AT^{-1} = A$, and so

$$(TJ_AT^{-1})^n = TJ_A^n T^{-1} = A^n \quad \Rightarrow \quad T\rho_n T^{-1} = \varphi_n \quad \forall n \in \mathbb{Z},$$

which proves that $\varphi \sim \rho$.

Remark. In fact, J_M can be substituted by any matrix similar to M, but the Jordan canonical form is, in some sense, the "most diagonal" one.

2 Dual Representation

Definition 2.1. For a vector space V over F, we define the dual space of V to be the vector space Hom(V, F), denoted by V^* .

Theorem 2.2. Let V and W be finite-dimensional vector spaces over F with ordered bases β and γ , respectively. For any linear transformation $L: V \to W$, the mapping $L^{\mathsf{T}}: W^* \to V^*$ defined by $L^{\mathsf{T}}(g) = gL$ for all $g \in W^*$ is a linear transformation with the property that $[L^{\mathsf{T}}]_{\gamma^*}^{\beta^*} = ([L]_{\beta}^{\gamma})^{\mathsf{T}}$.

Theorem 2.3. Let $\varphi : G \to \operatorname{GL}(V)$ be a representation of G. Then there is a corresponding representation of G, defined by: $\varphi_g^* = (\varphi_{g^{-1}})^{\mathsf{T}}$.

Proof. For the sake of convenience, we're only dealing with matrices here. Theorem 2.2 provides a better way to understand the "transpose" of a linear map. Now, it suffices to show that $\varphi_{gh}^* = \varphi_g^* \varphi_h^*$. This is so because

$$\varphi_{gh}^* = (\varphi_{(gh)^{-1}})^{\mathsf{T}} = (\varphi_{h^{-1}g^{-1}})^{\mathsf{T}} = (\varphi_{g^{-1}})^{\mathsf{T}} (\varphi_{h^{-1}})^{\mathsf{T}} = \varphi_g^* \varphi_h^*$$

which concludes the proof.

3 Character Theory

In this section we will only consider finite groups.

Definition 3.1 (Character). For a group G, the character of a group representation $f : G \to GL(V)$ is defined as $\chi_f : G \to \mathbb{C}$ where $\chi_f(g) = \text{Tr}(f_g)$.

Definition 3.2. The kernel of a character χ_f is the set $\{g \in G | \chi_f(g) = \chi_f(1)\}$.

Definition 3.3. The degree of a character χ_f is deg(f).

Definition 3.4. A character χ_f is irreducible if f is irreducible.

We now list some facts about the character of a finite group.

Theorem 3.5. $\chi_f(1) = \deg(f)$

Proof. By definition, $\chi_f(1) = \text{Tr}(f(1)) = \text{Tr}(I_V) = \dim(V) = \deg(f)$

Theorem 3.6 (Weyl's Unitarian Trick). All linear representations of a finite group are equivalent to unitary representations.

Proof. We want to find a change of basis and an inner product such that our linear maps become unitary. Over $V = \mathbb{C}^n$ we have the standard inner product or the dot product. This product is bad for representation theory though since f(g) is not an isometry. i.e $\langle v, w \rangle \neq \langle g \cdot v, g \cdot w \rangle$. Our fix is to define a new inner product

$$\langle v, w \rangle' := \frac{1}{|G|} \sum_{g \in G} \langle g \cdot v, g \cdot w \rangle$$

We can check that this is a valid inner product and is G-invariant. i.e it satisfies conjugate symmetry, linearity in the first argument, positive definiteness and definition 3.3.

$$\begin{split} \langle v, w \rangle' &= \frac{1}{|G|} \sum_{g \in G} \langle g \cdot v, g \cdot w \rangle \\ &= \frac{1}{|G|} \sum_{g \in G} \overline{\langle g \cdot w, g \cdot v \rangle} \\ &= \overline{\langle w, v \rangle'} \end{split}$$

$$\begin{split} \langle av + bu, w \rangle' &= \frac{1}{|G|} \sum_{g \in G} \langle g \cdot (av + bu), g \cdot w \rangle \\ &= \frac{1}{|G|} \sum_{g \in G} \langle g \cdot (av), g \cdot w \rangle + \langle g \cdot (bu), g \cdot w \rangle \\ &= \frac{a}{|G|} \sum_{g \in G} \langle g \cdot v, g \cdot w \rangle + \frac{b}{|G|} \sum_{g \in G} \langle g \cdot u, g \cdot w \rangle \\ &= a \langle v, w \rangle' + b \langle u, w \rangle' \end{split}$$

 $\langle v,v\rangle' = \frac{1}{|G|} \sum_{g \in G} \left\langle g \cdot v, g \cdot v \right\rangle \ge 0 \text{ with equality } \iff g \cdot v = 0, \forall g \in G \iff v = 0$

$$\begin{split} \langle h \cdot v, h \cdot w \rangle' &= \frac{1}{|G|} \sum_{g \in G} \langle hg \cdot v, hg \cdot w \rangle \\ &= \frac{1}{|G|} \sum_{g' \in G} \langle g' \cdot v, g' \cdot w \rangle \text{ (note } hg \text{ simply reorders the elements since G is a finite group)} \\ &= \langle v, w \rangle' \end{split}$$

Now that we have a suitable inner product, we can perform the Gram-Schmidt process on any basis of V to produce an orthonormal basis. Let $\beta = \{e_1, e_2, \ldots, e_n\}$ be the standard basis and call this o.n.b $\gamma = \{v_1, v_2, \ldots, v_n\}$. Now we can let $Q = [I_V]_{\gamma}^{\beta}$, then the claim is that $Q^{-1}[f_g]_{\beta}Q$ is a unitary matrix, where f_g is written with respect to the standard basis. This is true because,

$$Q^{-1}[f_g]_{\beta}Q = [I_V]^{\gamma}_{\beta}[f_g]_{\beta}[I_V]^{\beta}_{\gamma} = [f_g]_{\gamma},$$

but γ is an orthonormal basis with respect to our newly defined inner product, and f is also unitary with respect to that inner product, so $[f_g]_{\gamma}$ must be a unitary matrix.

Theorem 3.7. $\chi_f(s^{-1}) = \overline{\chi_f(s)}$.

Proof. $\overline{\chi_f(s)} = \overline{\operatorname{Tr}(f(s))}$. Using fact 2 and the fact that all unitary matrices are diagonalizable, $\overline{\operatorname{Tr}(f(s))} = \sum_{j=1}^n \overline{\lambda_j}$. The eigenvalues of a unitary operator satisfy $|\lambda| = 1$ or equivalently $\lambda \in U(1)$.

$$\overline{\lambda_j} = a_j - b_j i = \frac{a_j - b_j i}{a^2 + b^2} = \frac{1}{a_j + b_j i} = \lambda_j^{-1}$$

. Therefore,

$$\overline{\mathrm{Tr}(f(s))} = \sum_{j=1}^{n} \frac{1}{\lambda_j} = \chi_f(s^{-1})$$

Theorem 3.8. $\chi_f(tst^{-1}) = \chi(s)$.

Proof. By definition,

$$\chi_f(hgh^{-1}) = \operatorname{Tr}(f(hgh^{-1})) = \operatorname{Tr}(f(h)f(g)f(h^{-1})) = \operatorname{Tr}(f(h^{-1})f(h)f(g)) = \operatorname{Tr}(f(g)) = \chi_f(g),$$

where we used the fact that Tr(AB) = Tr(BA).

Definition 3.9 (Conjugacy class). The conjugacy classes of a group G are the set of equivalence classes formed by the equivalence relation $a \sim b \iff \exists g \in G, a = g^{-1}bg$

Definition 3.10 (Class function). A class function is a function that is constant on the conjugacy classes of G.

Fact 4 asserts that the character of a representation is a class function. In fact, the irreducible characters form an orthonormal basis of the vector space of class functions of G under the following inner product.

$$\langle \alpha, \beta \rangle = \frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\beta(g)}$$