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1 Representations of (Z,+)

Proposition 1.1. Let φ : Z → GLn(C) be a representation of (Z,+). Then φ is equivalent to the represen-

tation ρ defined by ρn = Jn
φ1
, where JM denotes the Jordan canonical form of a matrix M , which is unique

up to reordering the Jordan blocks.

Proof. Let A denote φ1, the image of 1 under φ. Then φ must be φk = Ak because 1 generates Z. Note

that φ is indeed a representation because φn+m = An+m = AnAm = φnφm, assuming A is invertible. Next,

observe that because JA is similar to A, there exists T ∈ GLn(C) such that TJAT
−1 = A, and so

(TJAT
−1)n = TJA

nT−1 = An ⇒ TρnT
−1 = φn ∀n ∈ Z,

which proves that φ ∼ ρ.

Remark. In fact, JM can be substituted by any matrix similar to M , but the Jordan canonical form is, in

some sense, the “most diagonal” one.

2 Dual Representation

Definition 2.1. For a vector space V over F , we define the dual space of V to be the vector space Hom(V, F ),

denoted by V ∗.

Theorem 2.2. Let V and W be finite-dimensional vector spaces over F with ordered bases β and γ, respec-

tively. For any linear transformation L : V → W , the mapping LT : W ∗ → V ∗ defined by LT(g) = gL for

all g ∈ W ∗ is a linear transformation with the property that
[
LT

]β∗

γ∗ =
(
[L]γβ

)T

.

Theorem 2.3. Let φ : G → GL(V ) be a representation of G. Then there is a corresponding representation

of G, defined by: φ∗
g = (φg−1)T.

Proof. For the sake of convenience, we’re only dealing with matrices here. Theorem 2.2 provides a better

way to understand the “transpose” of a linear map. Now, it suffices to show that φ∗
gh = φ∗

gφ
∗
h. This is so

because

φ∗
gh = (φ(gh)−1)T = (φh−1g−1)T = (φg−1)T(φh−1)T = φ∗

gφ
∗
h,

which concludes the proof.
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3 Character Theory

In this section we will only consider finite groups.

Definition 3.1 (Character). For a group G, the character of a group representation f : G → GL(V ) is

defined as χf : G → C where χf (g) = Tr(fg).

Definition 3.2. The kernel of a character χf is the set {g ∈ G|χf (g) = χf (1)}.

Definition 3.3. The degree of a character χf is deg(f).

Definition 3.4. A character χf is irreducible if f is irreducible.

We now list some facts about the character of a finite group.

Theorem 3.5. χf (1) = deg(f)

Proof. By definition, χf (1) = Tr(f(1)) = Tr(IV ) = dim(V ) = deg(f)

Theorem 3.6 (Weyl’s Unitarian Trick). All linear representations of a finite group are equivalent to unitary

representations.

Proof. We want to find a change of basis and an inner product such that our linear maps become unitary.

Over V = Cn we have the standard inner product or the dot product. This product is bad for representation

theory though since f(g) is not an isometry. i.e ⟨v, w⟩ ≠ ⟨g ·v, g ·w⟩. Our fix is to define a new inner product

⟨v, w⟩′ := 1

|G|
∑
g∈G

⟨g · v, g · w⟩

We can check that this is a valid inner product and is G-invariant. i.e it satisfies conjugate symmetry,

linearity in the first argument, positive definiteness and definition 3.3.

⟨v, w⟩′ = 1

|G|
∑
g∈G

⟨g · v, g · w⟩

=
1

|G|
∑
g∈G

⟨g · w, g · v⟩

= ⟨w, v⟩′

⟨av + bu, w⟩′ = 1

|G|
∑
g∈G

⟨g · (av + bu), g · w⟩

=
1

|G|
∑
g∈G

⟨g · (av), g · w⟩+ ⟨g · (bu), g · w⟩

=
a

|G|
∑
g∈G

⟨g · v, g · w⟩+ b

|G|
∑
g∈G

⟨g · u, g · w⟩

= a⟨v, w⟩′ + b⟨u,w⟩′

⟨v, v⟩′ = 1

|G|
∑
g∈G

⟨g · v, g · v⟩ ≥ 0 with equality ⇐⇒ g · v = 0,∀g ∈ G ⇐⇒ v = 0
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⟨h · v, h · w⟩′ = 1

|G|
∑
g∈G

⟨hg · v, hg · w⟩

=
1

|G|
∑
g′∈G

⟨g′ · v, g′ · w⟩ (note hg simply reorders the elements since G is a finite group)

= ⟨v, w⟩′

Now that we have a suitable inner product, we can perform the Gram-Schmidt process on any basis

of V to produce an orthonormal basis. Let β = {e1, e2, . . . , en} be the standard basis and call this o.n.b

γ = {v1, v2, . . . , vn}. Now we can let Q = [IV ]
β
γ , then the claim is that Q−1[fg]βQ is a unitary matrix, where

fg is written with respect to the standard basis. This is true because,

Q−1[fg]βQ = [IV ]
γ
β [fg]β [IV ]

β
γ = [fg]γ ,

but γ is an orthonormal basis with respect to our newly defined inner product, and f is also unitary with

respect to that inner product, so [fg]γ must be a unitary matrix.

Theorem 3.7. χf (s
−1) = χf (s).

Proof. χf (s) = Tr(f(s)). Using fact 2 and the fact that all unitary matrices are diagonalizable, Tr(f(s)) =∑n
j=1 λj . The eigenvalues of a unitary operator satisfy |λ| = 1 or equivalently λ ∈ U(1).

λj = aj − bji =
aj − bji

a2 + b2
=

1

aj + bji
= λ−1

j

. Therefore,

Tr(f(s)) =

n∑
j=1

1

λj
= χf (s

−1)

Theorem 3.8. χf (tst
−1) = χ(s).

Proof. By definition,

χf

(
hgh−1

)
= Tr(f(hgh−1)) = Tr(f(h)f(g)f(h−1)) = Tr(f(h−1)f(h)f(g)) = Tr(f(g)) = χf (g),

where we used the fact that Tr(AB) = Tr(BA).

Definition 3.9 (Conjugacy class). The conjugacy classes of a group G are the set of equivalence classes

formed by the equivalence relation a ∼ b ⇐⇒ ∃g ∈ G, a = g−1bg

Definition 3.10 (Class function). A class function is a function that is constant on the conjugacy classes

of G.

Fact 4 asserts that the character of a representation is a class function. In fact, the irreducible characters

form an orthonormal basis of the vector space of class functions of G under the following inner product.

⟨α, β⟩ = 1

|G|
∑
g∈G

α(g)β(g)
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