05/23/22 Notes

Zhuo Zhang and Dylan Chiu

May 23, 2022
e Next meeting time: 10am on Tuesday at AH347

1 Representations of (7Z,+)

Proposition 1.1. Let ¢ : Z — GL,(C) be a representation of (Z,+). Then ¢ is equivalent to the represen-

tation p defined by p, = J3, , where Ju; denotes the Jordan canonical form of a matriz M, which is unique

up to reordering the Jordan blocks.

Proof. Let A denote ¢y, the image of 1 under . Then ¢ must be ¢, = A* because 1 generates Z. Note
that ¢ is indeed a representation because @, ., = A" = A"A™ = ©,,0,,, assuming A is invertible. Next,

observe that because J4 is similar to A, there exists T € GL,,(C) such that TJsT~! = A, and so
(TJAT YY" =TJ,"T ' =A" = Tp, T '=¢, Vnez,
which proves that ¢ ~ p. O

Remark. In fact, Jy; can be substituted by any matrix similar to M, but the Jordan canonical form is, in

some sense, the “most diagonal” one.

2 Dual Representation

Definition 2.1. For a vector space V over F', we define the dual space of V' to be the vector space Hom(V, F'),
denoted by V*.

Theorem 2.2. Let V and W be finite-dimensional vector spaces over F with ordered bases B and 7y, respec-

tively. For any linear transformation L : V. — W, the mapping LT : W* — V* defined by L' (g) = gL for
. T

all g € W* is a linear transformation with the property that [LT} f = ([L]g) .

Theorem 2.3. Let ¢ : G — GL(V) be a representation of G. Then there is a corresponding representation
of G, defined by: p, = (<pg71)T.

Proof. For the sake of convenience, we're only dealing with matrices here. Theorem 2.2 provides a better
way to understand the “transpose” of a linear map. Now, it suffices to show that ¢p, = ¢g¢y,. This is so
because

Cin = (Pgny-1) " = (Pr-1g-1)" = (0g-1)T(n-1)" = @i},

which concludes the proof. O



3 Character Theory

In this section we will only consider finite groups.

Definition 3.1 (Character). For a group G, the character of a group representation f : G — GL(V) is
defined as x¢ : G — C where x7(g) = Tr(fy).

Definition 3.2. The kernel of a character x is the set {g € G|x(g) = xr(1)}.
Definition 3.3. The degree of a character x; is deg(f).
Definition 3.4. A character x is irreducible if f is irreducible.
We now list some facts about the character of a finite group.
Theorem 3.5. x (1) = deg(f)
Proof. By definition, x (1) = Tr(f(1)) = Tr(Iy) = dim(V) = deg(f) O

Theorem 3.6 (Weyl’s Unitarian Trick). All linear representations of a finite group are equivalent to unitary

representations.

Proof. We want to find a change of basis and an inner product such that our linear maps become unitary.
Over V = C™ we have the standard inner product or the dot product. This product is bad for representation

theory though since f(g) is not an isometry. i.e (v, w) # (g-v,g-w). Our fix is to define a new inner product
vw) = G‘ > {g-v,g-w)
geG

We can check that this is a valid inner product and is G-invariant. i.e it satisfies conjugate symmetry,

linearity in the first argument, positive definiteness and definition 3.3.
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Now that we have a suitable inner product, we can perform the Gram-Schmidt process on any basis
of V to produce an orthonormal basis. Let 8 = {e1,ea,...,e,} be the standard basis and call this o.n.b
v ={v1,v9,...,v,}. Now we can let Q = [IV],ﬁy, then the claim is that Q![f,]5Q is a unitary matrix, where

fq is written with respect to the standard basis. This is true because,

Q7' [f418Q = UvI}folslIv]E = [faln,

but v is an orthonormal basis with respect to our newly defined inner product, and f is also unitary with

respect to that inner product, so [f,], must be a unitary matrix. O

Theorem 3.7. xf(s™1) = x¢(s).

Proof. xs(s) = Tr(f(s)). Using fact 2 and the fact that all unitary matrices are diagonalizable, Tr(f(s)) =
Z;;l ;. The eigenvalues of a unitary operator satisfy |A| = 1 or equivalently A € U(1).
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. Therefore,
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O
Theorem 3.8. y(tst™1) = x(s).
Proof. By definition,
Xs (hgh™) = Te(f(hgh™)) = Te(f(h) f(9)f(h™1)) = Te(f(h™ 1) f(R) f(9)) = Tx(f(9)) = x4 (9),
where we used the fact that Tr(AB) = Tr(BA). 0

Definition 3.9 (Conjugacy class). The conjugacy classes of a group G are the set of equivalence classes

formed by the equivalence relation a ~ b <= 3Jg € G,a = g 'bg

Definition 3.10 (Class function). A class function is a function that is constant on the conjugacy classes

of G.

Fact 4 asserts that the character of a representation is a class function. In fact, the irreducible characters

form an orthonormal basis of the vector space of class functions of G under the following inner product.
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