05/20/22 Notes

Zhuo Zhang and Casey Appleton

May 20, 2022

- Next meeting time: 10 am on Monday at AH347

1 Polynomial and Rational Representations

Definition 1.1 (Polynomial Representations). A polynomial representation is a representation $f: \mathrm{GL}_{n}(\mathbb{K}) \rightarrow$ $\mathrm{GL}_{m}(\mathbb{K})$ such that each entry of $f(A)$ is some fixed polynomial in the entries of A.

Definition 1.2 (Rational Representations). A rational representation f is defined in the same way, except each entry of $f(A)$ is required to be a ratio of two polynomial expressions in the entries of A.

Proposition 1.3. Over an algebraically closed field \mathbb{K}, any rational representation $f: \mathrm{GL}_{n}(\mathbb{K}) \rightarrow \mathrm{GL}_{m}(\mathbb{K})$ is of the form $\frac{g}{\text { Det }^{k}}$, where $g: \mathrm{GL}_{n}(\mathbb{K}) \rightarrow \mathrm{GL}_{m}(\mathbb{K})$ is a polynomial representation.

Proof. Observe that since f must be a function, each entry of $f(X)$ must be well defined for all n^{2}-tuples $X_{i, j}, i, j=1 \ldots n$ such that the matrix X whose i, j-th entry is $X_{i, j}$ has nonzero determinant. It suffices to prove that for any given entry $\frac{p\left(\ldots, X_{i, j}, \ldots\right)}{q\left(\ldots, X_{i, j}, \ldots\right)}$ of the rational representation, there is some non negative integer k and some other polynomial $t\left(\ldots, X_{i, j}, \ldots\right)$ in n^{2} variables such that $q\left(\ldots, X_{i, j}, \ldots\right) \cdot t\left(\ldots, X_{i, j}, \ldots\right)=\operatorname{Det}(X)^{k}$. This is because to obtain the original claim, we can use $\frac{p}{q}=\frac{p \cdot t}{\text { Det }^{k}}$, and factor $\frac{1}{\text { Det }^{k_{0}}}$ out of the matrix, where k_{0} is the maximum value of k over all entries of $f(X)$. Now, using our observation that $q\left(\ldots, A_{i, j}, \ldots\right)$ must be nonzero when the determinant of $A \in M_{n \times n}(\mathbb{K})$ is nonzero, we see that $\operatorname{Det}(X)$ is contained in the ideal of all polynomials in n^{2} variables that vanish (are 0) at all points of $\mathbb{K}^{n^{2}}$ where q vanishes. So by applying the Nullstellensatz to the ideal given by $\left\{q \cdot a: a \in \mathbb{K}\left[\ldots, X_{i, j}, \ldots\right]\right\}$, we see that there exists some $t \in \mathbb{K}\left[\ldots, X_{i, j}, \ldots\right]$ and some integer $k \geq 0$ such that $q\left(\ldots, X_{i, j}, \ldots\right) \cdot t\left(\ldots, X_{i, j}, \ldots\right)=\operatorname{Det}(X)^{k}$, and as outlined above, the result follows.

Now, we give an example of a polynomial representation
Example $1.4\left(\operatorname{Sym}^{2}\left(\mathbb{K}^{2}\right)\right)$. Let $G=\mathrm{GL}_{2}(\mathbb{K})$, and let V be the \mathbb{K}-vector space of homogeneous polynomials of degree 2 in 2 variables with coefficients in \mathbb{K} (which has a basis given by $x^{2}, x y, y^{2}$). Let $g \in G$ act on V by a linear change of coordinates $x \rightarrow$ To be more precise, given $g \in \mathrm{GL}\left(\mathbb{K}^{2}\right), g \cdot p(x, y):=p\left(g_{1,1} x+\right.$ $\left.g_{1,2} y, g_{2,1} x+g_{2,2} y\right)$. In the basis $x^{2}, x y, y^{2}$, the corresponding map $f: \mathrm{GL}_{2}(\mathbb{K}) \rightarrow \mathrm{GL}_{3}(\mathbb{K})$ is given by

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a c & a d+b c & b d \\
c^{2} & 2 c d & d^{2}
\end{array}\right]
$$

2 Group Actions and Permutation Representations

Definition 2.1 (Group Action). Let G be a group and X be a set. A group action of G on X is a map $G \times X \rightarrow X$, denoted by $x \mapsto g \cdot x$, such that the following conditions hold

- (Identity) $e_{G} \cdot x=x$ for all $x \in X$, where e_{G} is the identity element of G.
- (Associativity) $g \cdot(h \cdot x)=(g h) \cdot x$ for all $g, h \in G$ and $x \in X$.

Remark. Note that the maps $g \cdot(-): X \rightarrow X$ associated to each $g \in G$ by the group action are all bijective, because the inverse of $g \cdot(-)$ is given by the map $g^{-1} \cdot(-)$. So for a finite set X, the group action associated to an element $g \in G$ is a permutation of the elements of X.

Definition 2.2 (Permutation Representation). Let G be a group that acts on a set X, and let \mathbb{K} be a field. Consider the free vector space V consisting of all finite formal linear combinations of elements of X over \mathbb{K}. This can be made into a G-module by defining $g \cdot(1 \cdot x)=1 \cdot(g \cdot x)$ and extending the action of G on elements of V of the form $1 \cdot x$ linearly to all elements of V. From the previous remark, one can see that this is a group homomorphism $G \rightarrow G L(V)$, which is a representation of G.

Definition 2.3 (Free Actions). A group action G on X is a free action if $g \cdot x=x$ implies g is the identity of G.

Definition 2.4 (Transitive Actions). A group action G on X is transitive if X is non-empty and if for each pair x, y in X there exists a g in G such that $g \cdot x=y$.

Definition 2.5 (Orbit). The orbit of $x \in X$ is $\{g \cdot x \mid g \in X\}$. Intuitively, this is the set of all elements in X that can be reached by x.

Definition 2.6 (Stabilizer). For every x in X, the stabilizer subgroup of G with respect to x is the set of all elements in G that fix x, that is, $\{g \in G \mid g \cdot x=x\}$. Note that the stabilizer subgroup is indeed a subgroup of G.

Definition 2.7 (Regular Representation). Let G be a finite group of order n and \mathbb{K} be a field. Let the group ring (algebra) $\mathbb{K}[G]$ be defined as the \mathbb{K}-vector space of all formal linear combinations of $g_{i} \in G$.

$$
\mathbb{K}[G]:=\left\{\sum_{i=1}^{n} a_{i} g_{i} \mid a_{i} \in \mathbb{K}, g_{i} \in G\right\}
$$

The multiplication operation of $\mathbb{K}[G], \cdot$, is defined to be the unique bilinear map $\mathbb{K}[G] \times \mathbb{K}[G] \rightarrow \mathbb{K}[G]$ such that for all $g, h \in G, g \cdot h=g h$.

- This multiplication operation turns $\mathbb{K}[G]$ into a \mathbb{K}-algebra
- The collection $\{g: g \in G\}$ of elements of $\mathbb{K}[G]$ form a basis for $\mathbb{K}[G]$ over \mathbb{K}.

Since $\mathbb{K}[G]$ is a vector space, for each $g \in G$, define the map $\mathbb{K}[G] \rightarrow \mathbb{K}[G]$ by $g\left(\sum a_{i} g_{i}\right)=\sum a_{i}\left(g g_{i}\right)$. These maps are invertible linear transformations of $\mathbb{K}[G]$, so $\mathbb{K}[G]$ is a representation of G. Note that this is just a special case of permutation representation where $X=G$, and the group action is given by the group operation.

3 Building New Representations from Old Ones

There are a few ways to construct a new representation from old ones: direct sum, tensor product, and restriction.

Definition 3.1 (Restriction). Let H be a subgroup of G and let $f: G \rightarrow \mathrm{GL}(V)$ be a representation of G. We can restrict the domain of f to H, denoted by $\left.f\right|_{H}$ or $\operatorname{Res}_{H}^{G}(V)$, and it would still be a group homomorphism. Thus $\left.f\right|_{H}$ is obviously a representation of H.

Remark. The converse is harder, namely to construct a representation of G from H.
Definition 3.2 (External Direct Sum). Let W_{1} and W_{2} be two abelian groups. Then their direct sum is defined the same structure of the set of ordered pairs

$$
W_{1} \oplus W_{2}:=\left\{\left(w_{1}, w_{2}\right) \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

with addition defined coordinate-wise. When both W_{1} and W_{2} carry additional structure, that structure is transferred to the direct sum in a coordinate-wise manner. For two vector spaces over the same base field, scalar multiplication is given by $k\left(w_{1}, w_{2}\right):=\left(k w_{1}, k w_{2}\right)$.

Example 3.3. If W_{1} and W_{2} are two G-modules, then define the group action by:

$$
g \cdot\left(w_{1}, w_{2}\right):=\left(g \cdot w_{1}, g \cdot w_{2}\right) \quad \forall g \in G, w_{1} \in W_{1}, w_{2} \in W_{2}
$$

Definition 3.4. Let $f^{(1)}: G \rightarrow \mathrm{GL}\left(W_{1}\right)$ and $f^{(2)}: G \rightarrow \mathrm{GL}\left(W_{2}\right)$ be two representations of a group G. Then there exists a natural representation of G given by $\left(f^{(1)} \oplus f^{(2)}\right): G \rightarrow \mathrm{GL}\left(W_{1} \oplus W_{2}\right)$, and

$$
\left(f^{(1)} \oplus f^{(2)}\right)_{g}\left(w_{1}, w_{2}\right)=\left(f_{g}^{(1)}\left(w_{1}\right), f_{g}^{(2)}\left(w_{2}\right)\right)
$$

Moreover, it's easy to see that if the matrices corresponding to f_{1} and f_{2} are A and B, then the matrix corresponding to φ is:

$$
\left(\begin{array}{c|c}
A & O \\
\hline O & B
\end{array}\right)
$$

Remark. Example 3.3 and Definition 3.4 are equivalent because V is a G-module if and only if there exists a representation of G.

Definition 3.5 (Internal Direct Sum). Given an abelian group V and two subgroups W_{1} and W_{2}, we say V is the direct sum of W_{1} and W_{2} if each element of V is expressible uniquely as the sum of an element of W_{1} and an element of W_{2}.

Remark. Note that because this way of expressing any element of V as a sum of elements of W_{1} and W_{2} is unique, it gives an isomorphism between V and $W_{1} \oplus W_{2}$, which one can check is still an isomorphism even if V carries the extra structure of a ring, module, vector space, G-module, etc...

Example 3.6. Let V be a vector space, then $V=\bigoplus_{i=1}^{n} W_{i}$ if and only if:

- $V=\sum_{i=1}^{n} W_{i}$. That is, $\left\{\sum_{i=1}^{n} w_{i} \mid w_{i} \in W_{i}\right\}=V$
- $\operatorname{dim} V=\sum_{i=1}^{n} \operatorname{dim} W_{i}$.

Definition 3.7 (Projection). Let V be a vector space and W_{1} and W_{2} be subspaces of V such that $V=$ $W_{1} \oplus W_{2} . T: V \rightarrow V$ is called the projection on W_{1} along W_{2} if, for $x=x_{1}+x_{2}$ with $x_{1} \in W_{1}$ and $x_{2} \in W_{2}$, we have $T(x)=x_{1}$. Namely, $V=\operatorname{im} T \oplus \operatorname{ker} T$.

Theorem 3.8 (Maschke's Theorem). Suppose G is a finite group, and V is a finite dimensional vector space over a field \mathbb{F} of characteristic not dividing $|G|$. Let $f: G \rightarrow G L(V)$ be a reducible representation of G, i.e. V has a non-trivial G-invariant proper subspace W. Then there exists another G-invariant subspace \widetilde{W}, such that $V=W \oplus \widetilde{W}$ as G-modules.

Proof. Let G and $W \subset V$ be given. Let W^{\prime} be any subspace of V such that $V=W \oplus W^{\prime}$. Note that W^{\prime} may not be G-invariant. Define the projection $p: V \rightarrow W$ along W^{\prime}. Define another map $\widetilde{p}::$

$$
\widetilde{p}:=\frac{1}{|G|} \sum_{t \in G} f(t) \circ p \circ f\left(t^{-1}\right) .
$$

Because $f(t)$ and $f\left(t^{-1}\right)$ are from V to V and p is from V to W, it follows that \widetilde{p} maps from V to W. Consider any $x \in W$, then $f\left(t^{-1}\right)(x) \in W$ because W is G-invariant. Hence,

$$
p \circ f\left(t^{-1}\right)(x)=f\left(t^{-1}\right)(x)
$$

because p projects onto W. Therefore,

$$
\widetilde{p}(x)=\frac{1}{|G|} \sum_{t \in G} f(t) f\left(t^{-1}\right)(x)=x \quad \forall x \in W .
$$

Thus, \widetilde{p} is also a projection onto W, let $\widetilde{W}=\operatorname{ker} \widetilde{p}$. I claim that $f(s)$ and \widetilde{p} commute for all $s \in G$. Namely, it needs to be shown that $f(s) \circ \widetilde{p} \circ f\left(s^{-1}\right)=\widetilde{p}$ for all $s \in G$. This is so because

$$
f(s) \circ \widetilde{p} \circ f\left(s^{-1}\right)=\frac{1}{|G|} \sum_{t \in G} f(s t) \circ \widetilde{p} \circ f\left((s t)^{-1}\right)=\widetilde{p}
$$

where the first equality follows because $t \mapsto s t$ is a bijection from G to itself. Therefore, $f(s) \circ \widetilde{p}=\widetilde{p} \circ f(s)$ for all $s \in G$. Now, let $x \in \widetilde{W}=\operatorname{ker} \widetilde{p}$ and let $s \in G$, then $\widetilde{p}(x)=0_{V}$, so

$$
\widetilde{p} \circ f(s)(x)=f(s) \circ \widetilde{p}(x)=f(s)\left(0_{V}\right)=0_{V} .
$$

Therefore, \widetilde{W} is G-invariant and $V=W \oplus \widetilde{W}$.
Theorem 3.9. Every representation of a finite group G is completely decomposable, i.e. is equivalent to the direct sum of finitely many irreducible representations of G (Again, provided that the characteristic of the base field does not divide the order of G).

Proof. Let $f: G \rightarrow G L(V)$ be a representation of a finite group G. The proof is by mathematical induction on the degree of f. If $\operatorname{deg}(f)=1$, then we are done because any degree one representation is irreducible. Assume the statement is true whenever $\operatorname{deg}(f) \leq n$, and suppose that $\operatorname{deg}(f)=n+1$. If f is irreducible, then we're done again, so assume f is not irreducible. By Maschke's Theorem, V has two G-invariant subspaces V_{1}, V_{2} and $V=V_{1} \oplus V_{2}$, so evidently $f \sim f^{(1)} \oplus f^{(2)}$, where $f^{(1)}$ and $f^{(2)}$ are the corresponding subrepresentations of f. Since $\operatorname{deg}\left(f^{(1)}\right) \leq n$, we may decompose it into a direct sum of finite irreducible representations of G and do the same to $f^{(2)}$. Therefore, f is equivalent to the direct sum of finitely many irreducible representations of G.

Definition 3.10 (Indecomposable Representation). A representation $f: G \rightarrow \mathrm{GL}(V)$ is indecomposable if it is not a direct sum of irreducible subrepresentations.

Remark. An irreducible representation must be indecomposable. Theorem 3.8 just showed that a reducible representation of a finite group must be decomposable (under a mild condition on the characteristic of the base field).

