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1 Intersection between Representation and Algebraic geometry

Theorem 1.1. Given k an algebraically closed field, f : GLn(k) → GLm(k) a rational representation, then

there exists a polynomial representation g such that f(A) = 1
det(A)g(A).

Definition 1.2 (affine algebraic variety). For a given field K and any set of polynomials S ⊆ K[x1, . . . , xn],

define

V (S) := {x ∈ Kn|p(x) = 0, ∀p ∈ S}.

It is standard to prove V (S) = V (⟨S⟩), where ⟨S⟩ is the ideal generated by ⟨S⟩ in K[x1, . . . , xn].

Definition 1.3 (ideal generated by points). A dual definition is to look at the ideal generated by points,

where the ideal consists of polynomials vanishing on a given set. Define

I(V ) := {p ∈ K[x1, . . . , xn]|p(x) = 0, ∀x ∈ V }.

Definition 1.4 (radicals). Define radicals r(I) (or
√
I) of an ideal I in a commutative ring R to be

r(I) := {f ∈ R|∃n ∈ Z+, fn ∈ I}

Definition 1.5 (Hilbert’s Nullstellensatz). Given K which is an algebraically closed field, and an ideal

J ⊆ K[x1, . . . , xn], we have

I(V (J)) =
√
J

We see that r(I) ⊆ I(V (I)) for every ideals I ⊆ K[x1, . . . , xn] easily, by factoring polynomials into linear

factors. The other way is less obvious. This powerful theorem gives a complete description of those ”secret”

equations that vanishes on V (I). For many equations until today, it still remains to be a mystery what are

those ”secret” equations.

Example 1.6. Consider a 2 ∗ 2 matrice M =

[
a b

c d

]
in C. What are those equations satisfied by a,b,c, and
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d for M2 = 0. A direct computation gives us four equations

a2 + bc = 0

ab+ bd = 0

ac+ cd = 0

bc+ d2 = 0

In this case, it is easy to solve for other equations. But just as an illustration, when a matrix M satisfies

M2 = 0, its trace must be 0 (M2 has 0 eigenvalues, where λ2i = 0 is an eigenvalue of M2). A hidden linear

equation that can’t be generated by the four quadratic equations.

Open Problem 1.7. What are the polynomial constraints on the entries besides the obvious polynomials

for commuting matrices, i.e. [A,B] = AB −BA = 0

2 Representation Theory

Recall some definitions and theorems

• given G a finite group, f : G→ GL(V ) over C, the character χf (g) = tr(f(g)).

• class(G) is a vector space containing χf .

• (ϕ|ψ) = 1
|G|

∑
t∈G ϕ(t)ψ(t).

• (χ|χ′) =

0, if χ andχ′are not isomorphic;

1, otherwise.

• (χ|χ′) = 1 ⇐⇒ χ is irreducible.

• character determines representations up to isomorphism χV = χ′
V ′ ⇐⇒ V ∼=G V ′.

Follows from the example last time, today we introduce the regular representation.

Definition 2.1 (Regular representation). Given V = C[G] with basis {eg : g ∈ G}, where teg = etg, t ∈ G.

Definition 2.2 (Regular representation cited from Serre’s). Let g be the order of G, and let V be a vector

space of dimension g, with a basis (et)t∈G indexed by the elements t of G. For s ∈ G, let ps be the linear

map of V into V which sends et to est; this defines the regular representation.

Proposition 2.3 (P5). The character of the regular representation is given by the formulas:

χreg(g) =

|G| if g = id

0 o.w.

Proof. The multiplicity of the time Suppose g ̸= 1, then there is no fixed point under the action of g (gv′g = v′g

↔gg’=g’ ↔ g = 1), thus the permutation matrix of g has trace 0. If g = 1, the matrix is identity and the

trace of it is the dimension of the representation that is the order of the group G.

Corollary 2.4 (C2). If C[G] ∼=G

⊕
i wi, where wi is irreducible decomposition and deg(wi) = ni. Then,
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(i) The degrees ni satisfy
∑h

i=1 n
2
i = |G|.

(ii) If s ̸= 1,
∑h

i=1 niχi(s) = 0.

Proof. Let rG denotes the character of regular representation. Since for any irreducible character χ, (χ|rG) =
1
|G|

∑
g∈G χ(g)rG(g

−1) = χ(1) rG(1)
|G| = χ(1), the multiplicity of an irreducible representation in the decompo-

sition of regular representation is exactly the degree of the irreducible representation. Then, since character

behaves nicely to direct sum, rG(s) =
∑
niχi(s) for all s ∈ G. To prove (a), take s = 1. To prove (b), take

s ̸= 1.

Now, we want to show that the irreducible class of G, χ1, . . . , χh form an orthonormal basis of class(G).

Recall that χ1, . . . , χh form an orthonormal set (reference: ch.2.3 T3), so we are left to show they generate

class(G). First, we prove the following proposition.

Proposition 2.5 (P6). Let f ∈ Class(G), p : G → GL(V ) be a linear representation of G. Define

pf :=
∑

t∈G f(t)pt ∈ End(V ). If (p, V ) is irreducible of degree n and character χ, then pf is a homothety

(pf = λIdv) of ratio

λ =
1

n

∑
t∈G

f(t)χ(t) =
|G|
n

(f |χ∗),where χ∗(g) = χ(g) = χ(g−1).

P6. We would like to use Schur’s lemma II for the proof. (Recall the statement: Consider V = W finite-

dimensional over an algebraically closed field. Let ρV and ρW be irreducible representations of G on V and

W . Then if ρV = ρW , the only nontrivial G-linear maps are the identity, and scalar multiples of the identity.)

To apply Schur’s lemma, NTS ρf is a G-equiv endomorphism V → V . That is, ρtρs = ρsρt,∀s ∈ G. Here,

ρ−1
s ρtρs = ρ−1

s

∑
t∈G

f(t)ρtρs =
∑
t∈G

f(t)ρs−1ts, let u = s−1ts,

=
∑
u∈G

fuρu = ρf .

So, we can apply Schur’s lemma, given ρf = λIdν , tr(ρf ) = nλ.

We can also obtain the trace with its formula,

tr(ρf ) = tr(
∑
t∈G

f(t)ρt) =
∑
t∈G

f(t)χ(t) = |G|(f, χ∗).

Hence, nλ = |G|(f |χ∗).

With the proposition, we can proceed to prove our goal.

Theorem 2.6 (T6). The irreducible class of G, χ1, . . . , χh form an orthonormal basis of class(G).

Proof. Given an orthonormal set χ1, . . . , χn, consider general V , with the Gram-Schmidt process, one can

extend such set to an orthonormal basis. Therefore, we only need to show ”χ1, . . . , χk an orthonormal basis

for f if f ∈ class(C) has (f |χ∗
i ) = 0,∀i, then f ≡ 0.

Let f ∈ class(G), ρ be any linear representation, define ρf =
∑

t∈G f(t)ρ(t) (as in the prop), then when

ρ is irreducible, by the proposition, ρf ≡ 0. When ρ is reducible, by Maschke’s theorem, ρf ≡ 0.

Lastly, consider ρ as a regular representation, ρf (etd) =
∑

t∈G f(t)ρtetd =
∑

t∈G f(t)et, This implies

f(t) = 0,∀t ∈ G.

Corollary 2.7 (T7). The number of irreducible representations of G (up to isomorphism) is equal to the

number of classes of G.
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3 Relationship to Standard Young Tableaux

For G = Sn, |G| = n!, C[Sn] ∼=G ⊕n
i=1niwi

∼= ⊕λ⊢nλwλ
.

By C2(1), n! =
∑

λ n
2
λ. Also, the number of Standard Young Tableaux given shape λ = fλ = nλ, implying

n! =
∑

λ n
2
λ. This is called the Robinson–Schensted correspondence, which is a bijective correspondence

between permutations and pairs of standard Young tableaux of the same shape. This correspondence has

been generalized in numerous ways, notably by Knuth to what is known as the Robinson–Schensted–Knuth

correspondence, and a further generalization to pictures by Zelevinsky [wiki].

Something interesting to think about is how to give a combinatorial proof for the hook-length formula.

Definition 3.1 (Hook Length Formula). The hook length formula is the number of standard Young tableaux

of shape λ, denoted by fλ as

fλ =
n!∏
hλ(i, j)

.

There is a direct bijetive proof given by Novelli, Pak, and Stoyanovskii in 1997. However, something else

interesting to consider (a possible alternate proof) is the balanced tableaux.

Definition 3.2 (hook height, hook width, hook length). The hook height hH(i, j) of cell (i, j) is the number

of cells below (and including) (i, j) in Hij . Similarly, the hook width hW (i, j) of (i, j) is the number of cells

to the right of (and including) (i, j). The hook length h(i, j) is defined to be the cardinality of Hij . That is,

h(i, j) = hH(i, j) + hW (i, j)− 1.

Definition 3.3 (hook rank). The hook rank r(i, j) of label tii is the number of labels ti′j′ in H, which are

less than or equal to tik.

Definition 3.4 (balanced tableau). An ordinary tableau is balanced of r(i, j) = hH(I, J) for all cells (i, j).

Balanced tableaux is first defined and interested to Edelman and Greene because of Stanley’s conjecture

and proof [1982, 1984] on the number of weak Bruhat order of the symmetric group Sn. Though Stanley

proved his conjecture, he did not yield an explicit correspondence between maximal chains and standard

tableaux. Thus, Edelman and Greene defined the balanced tableuax to encode (inversions) of maximal chain

and proved several bijections combinatorially.

Note that we mention this because of the following theorem. Since the number of standard young tableaux

is the number of balanced tableaux, one might be able to use the balance tableaux to derive a combinatorial

proof for the hook length formula.

Theorem 3.5 (Edelman and Greene, 1987). Given λ, the number of SYT = the number of balanced tableaux.

4 Onward to tensor product

Next time, we would discuss tensor product. For now, we would give a sneak peak on this topic.

Given V,W two set, we can find a cartesian product V ×W and a bilinear map V ×W → U . Our aim is

to turn bilinear map into linear map. To do so, define a tensor product V
⊗
W s.t. ∃! linear map h which
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commutes the diagram.

V ×W V ⊗W

U

bilinear

∃!h linear
bilinear

We would introduce formal definition and different properties/actions later. For now, just note that G acts

on V
⊗
W by g(v ⊗ w) = g(v)⊗ g(w).

This leads us to discussion of tensor product decomposition. In Sn, the coefficient is Kronecker coefficient,

denoted ad gλµν . That is, Kronecker coefficient describe the decomposition of the tensor product of two

irreducible representations of a symmetric group into irreducible representations.

Sλ ⊗ Sµ = ⊕µ⊢nS
⊕g(λ,µ,ν)
µ ,where g(λ, µ, ν) the multiplicity of Sν in Sλ ⊗ Sµ.

Now consider the tensor product of GLn representation, we obtain the Littlewood-Richardson coefficients

cλµν , where

Vλ ⊗ V µ = ⊕λ⊢|µ|+|ν|V
⊕cλµν

λ

As for our very first discussion today on the theorem, we can rewrite the theorem in terms of tensor product

as below

Theorem 4.1. If V is a rational representation of GLn, then V ∼= det⊗k ⊗ V ′, where k is the algebraically

closed field and V ′ is a polynomial representation.
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