COMBINATORIAL RULES FOR THREE BASES OF POLYNOMIALS

COLLEEN ROSS AND ALEXANDER YONG

Abstract

We present combinatorial rules (one theorem and two conjectures) concerning three bases of $\mathbb{Z}\left[x_{1}, x_{2}, \ldots.\right]$. First, we prove a "splitting" rule for the basis of Key polynomials [Demazure '74], thereby establishing a new positivity theorem about them. Second, we introduce an extension of [Kohnert '90]'s "moves" to conjecture the first combinatorial rule for a certain deformation [Lascoux '01] of the Key polynomials. Third, we use the same extension to conjecture a new rule for the Grothendieck polynomials [LascouxSchützenberger '82].

In memory of Alain Lascoux, who inspired this paper one night in Osaka

1. Introduction

1.1. Overview. This paper contributes to the study of certain bases of the ring of polynomials Pol $=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ that are defined by symmetrizing operators. Our two main sources on this subject, and the specific perspective we pursue, are A. Lascoux's books [14, 11].
The Schur basis of the ring Λ of symmetric polynomials is central to algebraic combinatorics in at least two ways. These polynomials have fundamental applications outside of the theory of symmetric functions, specifically to representation theory of the symmetric group and of the general linear group, and to Schubert calculus, see, e.g., [20]. Moreover, understanding combinatorial descriptions of the Schur polynomials has led to a rich theory of Young tableaux. In particular, the problem of how to multiply two Schur polynomials, and expand back into the Schur basis, is important in the aformentioned applications. This problem is solved by the Littlewood-Richardson rule.

Now, since the ring of symmetric polynomials is a subring of Pol, one considers the following basic question [11]:

How does one lift properties of Λ (and its Schur basis) to the entirety of Pol?
A number of bases, that may be considered natural lifts of the Schur basis, are considered in [14, 11]. These include the Schubert, Grothendieck, Macdonald and Key polynomials; we will also consider a deformation of the Key polynomials defined by A. Lascoux [13]. These are lifts of the Schur basis in the sense that a certain subset in each of these families is precisely the Schur basis, or otherwise deforms the elements of the Schur basis. In fact, like the Schur polynomials, each of these families have applications to representation theory and geometry.

Now, one would like to find combinatorial descriptions for the polynomials in each of these families. Indeed, such descriptions exist. Yet at present, there is no analogue of the Littlewood-Richardson rule. That is, for each basis, one desires a combinatorial
description of how to multiply and expand in the basis so that one recovers a LittlewoodRichardson rule in the special case of Schur polynomials. For instance, for the case of Schubert polynomials, and more generally, the case of Grothendieck polynomials, this is a longstanding open problem in combinatorial Schubert calculus, cf. [20].

There is a close tie between Littlewood-Richardson rules and the Young tableau description of Schur polynomials. Therefore, by analogy, one would like to find alternative combinatorial descriptions of the aforementioned bases of Pol. The hope is that such alternatives might shed light on finding corresponding generalizations of the LittlewoodRichardson rule.

Our work consists of a new combinatorial description for three of the aforementioned bases of polynomials. We give one theorem and two conjectures, which we summarize as follows:

First, we prove a "splitting" rule for the basis of Key polynomials $\left\{\kappa_{\alpha} \mid \alpha \in \mathbb{Z}_{\geq 0}^{\infty}\right\}$, thereby establishing a new positivity theorem about these polynomials. This family was introduced by [5] and first studied combinatorially in [16, 15]. Combinatorial rules for their monomial expansion are known, see, e.g., $[16,15,21,8]$. Our rule refines the rule of [21, Theorem 5(1)]. Our rule is also analogous to the splitting rule [4, Corollary 3] for the basis of Schubert polynomials $\left\{\mathfrak{S}_{w} \mid w \in S_{\infty}\right\}$.

Second, we investigate the aforementioned basis of polynomials $\left\{\Omega_{\alpha} \mid \alpha \in \mathbb{Z}_{\geq 0}^{\infty}\right\}$ defined by A. Lascoux [13] that deforms the Key basis. By extending the Kohnert moves of [10] we conjecturally give the first combinatorial rule for the Ω-polynomials.

Third, in [10], the Kohnert moves were used to conjecture the first combinatorial rule for Schubert polynomials (a proof was later presented in [25]). Similarly, we use the extended Kohnert moves to give a conjecture for the basis of Grothendieck polynomials $\left\{\mathfrak{G}_{w} \mid w \in S_{\infty}\right\}$ [17]. This rule appears significantly different than earlier (proved) rules, such as those in [7, 13, 3, 19].
1.2. Splitting Key polynomials. Let S_{∞} be the group of permutations of \mathbb{N} with finitely many non-fixed points. This group acts on Pol by permuting the variables. Let s_{i} be the simple transposition interchanging x_{i} and x_{i+1}. The divided difference operator acts on Pol by

$$
\partial_{i}=\frac{1-s_{i}}{x_{i}-x_{i+1}} .
$$

Define the Demazure operator by setting

$$
\pi_{i}(f)=\partial_{i}\left(x_{i} \cdot f\right), \text { for } f \in \mathrm{Pol} .
$$

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathbb{Z}_{\geq 0}^{\infty}$ and assume throughout that $|\alpha|=\sum_{i} \alpha_{i}<\infty$. Define the Key polynomial κ_{α} to be

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots, \quad \text { if } \alpha \text { is weakly decreasing. }
$$

Otherwise, set

$$
\kappa_{\alpha}=\pi_{i}\left(\kappa_{\widehat{\alpha}}\right) \text { where } \widehat{\alpha}=\left(\ldots, \alpha_{i+1}, \alpha_{i}, \ldots\right) \text { and } \alpha_{i+1}>\alpha_{i} .
$$

(The $\pi_{i}{ }^{\prime} \mathrm{s}$ (and $\partial_{i}{ }^{\prime} \mathrm{s}$ also) are well-known to satisfy the braid relations for S_{n} and so the $\kappa_{\alpha}{ }^{\prime} \mathrm{s}$ are independent of the order in which the $\pi_{i}{ }^{\prime}$ s are applied.) Since the leading term (under the pure reverse lexicographic order) of κ_{α} is x^{α}, the Key polynomials form a \mathbb{Z}-basis of Pol.

The Key polynomials lift the Schur polynomials: when

$$
\begin{equation*}
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}, 0,0,0, \ldots\right), \text { where } \alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{t} \text {, then } \tag{1}
\end{equation*}
$$

(2)

$$
\kappa_{\alpha}=s_{\left(\alpha_{t}, \cdots, \alpha_{2}, \alpha_{1}\right)}\left(x_{1}, \ldots, x_{t}\right) .
$$

A descent of α is an index i such that $\alpha_{i} \geq \alpha_{i+1} ;$ a strict descent is an index i such that $\alpha_{i}>\alpha_{i+1}$. Fix descents $d_{1}<d_{2}<\ldots<d_{k}$ of α containing all strict descents of α. Since π_{i} is a symmetrizing operator, κ_{α} is separately symmetric in each collection:

$$
X_{1}=\left\{x_{1}, x_{2}, \ldots, x_{d_{1}}\right\}, X_{2}=\left\{x_{d_{1}+1}, x_{d_{1}+2}, \ldots, x_{d_{2}}\right\}, \ldots, X_{k}=\left\{x_{d_{k-1}+1}, x_{d_{k-1}+2}, \ldots, x_{d_{k}}\right\} .
$$

(The variables $x_{d_{k}+1}, x_{d_{k}+2}, \cdots$ do not appear in κ_{α}.) Therefore, uniquely:

$$
\begin{equation*}
\kappa_{\alpha}(X)=\sum_{\lambda^{1}, \ldots, \lambda^{k}} \mathcal{E}_{\lambda^{1}, \ldots, \lambda^{k}}^{\alpha} s_{\lambda^{1}}\left(X_{1}\right) \cdots s_{\lambda^{k}}\left(X_{k}\right), \tag{3}
\end{equation*}
$$

where each λ^{i} is a partition. A priori one only knows $\mathcal{E}_{\lambda^{1}, \ldots, \lambda^{k}}^{\alpha} \in \mathbb{Z}$.
The Rothe diagram of a permutation $w \in S_{n}$ is

$$
\operatorname{Rothe}(w)=\left\{(x, y) \mid y<w(x) \text { and } x<w^{-1}(y)\right\} \subset[n] \times[n]
$$

(indexed so that the southwest corner is labeled $(1,1)$). The code of w, denoted code $(w) \in$ $\mathbb{Z}_{\geq 0}^{n}$ counts the number of boxes in columns of Rothe (w) (from left to right). Given $\alpha \in$ $\mathbb{Z}_{\geq 0}^{\bar{\infty}}$, there is a unique $w[\alpha] \in S_{\infty}$ such that $\operatorname{code}(w[\alpha])=\alpha$ (up to trailing 0 's); see, e.g., [20, Proposition 2.1.2]. We will need a special tableau coming from [24, Section 4]:
The tableau $T[\alpha]$: Given $w[\alpha], i_{1}<i_{2}<\ldots<i_{a}$ in the first column of $T[\alpha]$ are given by having i_{j} be the largest descent position smaller than i_{j+1} in the permutation $w s_{i_{a}} s_{i_{a-1}} \cdots s_{i_{j+1}}$. The next column of $T[\alpha]$ is similarly determined, starting from $w s_{i_{a}} \cdots s_{i_{1}}$, etc.

An increasing tableau T of shape λ is a filling with strictly increasing rows and columns. (In fact, $T[\alpha]$ is an increasing tableau.) Let $\operatorname{row}(T)$ be the reading word of T, obtained by reading the entries of T along rows, from right to left, and from top to bottom. Let $\min (T)$ be the smallest label in T. Finally, given a reduced word $\mathbf{a}=a_{1} a_{2} \ldots a_{m}$, let EGLS(a) be the output of the Edelman-Greene correspondence (see Section 2.1).
The following result shows $\mathcal{E}_{\lambda^{1}, \ldots, \lambda^{k}}^{\alpha} \in \mathbb{Z}_{\geq 0}$. It is analogous to one on Schubert polynomials [4, Corollary 3] (which our proof uses).

Theorem 1.1. The number $\mathcal{E}_{\lambda^{1}, \ldots, \lambda^{k}}^{\alpha}$ counts sequences of increasing tableaux $\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ where

- T_{i} is of shape λ^{i};
- $\min T_{1}>0, \min T_{2}>d_{1}, \min T_{3}>d_{2}, \ldots, \min T_{k}>d_{k-1} ;$ and
- $\operatorname{row}\left(T_{1}\right) \cdot \operatorname{row}\left(T_{2}\right) \cdots \operatorname{row}\left(T_{k}\right)$ is a reduced word of $w[\alpha]$ such that $\operatorname{EGLS}\left(\operatorname{row}\left(T_{1}\right) \cdot \operatorname{row}\left(T_{2}\right) \cdots \operatorname{row}\left(T_{k}\right)\right)=T[\alpha]$.

When $d_{j}=j$ for all $j \geq 1$, Theorem 1.1 specializes to an instance of the monomial expansion formula [21, Theorem 5(1)] for κ_{α} (restated as Theorem 2.5 below). Also, when (1) holds, $k=1, d_{1}=t$ and thus Theorem 1.1 gives (2).

Example 1.2. The (strict) descents of $\alpha=(1,3,0,2,2,1)$ are $d_{1}=2, d_{2}=5$, and

$$
\begin{aligned}
\kappa_{1,3,0,2,2,1}=s_{3,2}\left(x_{1}, x_{2}\right) s_{2,1,1} & \left(x_{3}, x_{4}, x_{5}\right)+s_{3,2}\left(x_{1}, x_{2}\right) s_{2,1}\left(x_{3}, x_{4}, x_{5}\right) s_{1}\left(x_{6}\right) \\
& +s_{3,1}\left(x_{1}, x_{2}\right) s_{2,2}\left(x_{3}, x_{4}, x_{5}\right) s_{1}\left(x_{6}\right)+s_{3,1}\left(x_{1}, x_{2}\right) s_{2,2,1}\left(x_{3}, x_{4}, x_{5}\right)
\end{aligned}
$$

exhibits the claimed non-negativity of Theorem 1.1.

Also, $w[\alpha]=2516743$ (one line notation) and $T[\alpha]=$| 1 | 3 | 4 |
| :--- | :--- | :--- | . Thus, $\mathcal{E}_{(3,2),(2,1,1), \emptyset}^{(1,3,0,2,2,1)}=$ $\mathcal{E}_{(3,2),(2,1),(1)}^{(1,3,0,2,2,1)}=\mathcal{E}_{(3,1),(2,2),(1)}^{(1,3,0,2,2)}=\mathcal{E}_{(3,1),(2,2,1), \emptyset}^{(1,3,0,2,2,1)}=1$ are respectively witnessed by

For example, for the leftmost sequence, $\operatorname{EGLS}(43152 \cdot 6456 \cdot \emptyset)=T[\alpha]$ holds.
1.3. The Ω polynomials. A. Lascoux [13] defines Ω_{α} for $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \mathbb{Z}_{>0}^{\infty}$ by replacing π_{i} in the definition of the Key polynomials with the operator defined by

$$
\widetilde{\pi}_{i}(f)=\partial_{i}\left(x_{i}\left(1-x_{i+1}\right) f\right) .
$$

(These operators also can be seen to satisfy the braid relations; cf. [11, Chapter 1.4].)
The initial condition is $\Omega_{\alpha}=x^{\alpha}\left(=\kappa_{\alpha}\right)$, if α is weakly decreasing. The Ω polynomials deform the Key polynomials. While at present there is no known geometric or representation theoretic intepretation of the Ω polynomials, as is pointed out in loc. cit., many of the known relationships between the Key and Schubert basis extend to ones between the Ω and Grothendieck basis (the latter family is formally recalled in the next subsection).

The skyline diagram is Skyline $(\alpha)=\left\{(i, y): 1 \leq y \leq \alpha_{i}\right\} \subset \mathbb{N}^{2}$. Graphically, it is a collection of columns α_{i} high. For instance,

$$
\text { Skyline }(1,3,0,2,2,1)=\left(\begin{array}{cccc}
\cdot & + & \cdot & \cdot \\
\cdot & + & + & + \\
+ & + & + & +
\end{array}\right)
$$

Beginning with Skyline (α), Kohnert's rule [10] generates diagrams D by sequentially moving any + at the top of its column to the rightmost open position in its row and to its left. (The result of such a move need not be the skyline of any $\gamma \in \mathbb{Z}_{\geq 0}^{\infty}$.) Let $x^{D}=\prod_{i} x_{i}^{d_{i}}$ be the column weight where d_{i} is the number of + 's in column i of D. If the same D results from a different sequence of moves, it only counts once. Kohnert's theorem states $\kappa_{\alpha}=\sum x^{D}$, where the sum is over all such D. Extending this, we introduce:
The K-Kohnert rule: Each + either moves as in Kohnert's rule, or stays in place and moves. That is, in the latter case, we mark the original position with a " g " and we place a + in the rightmost open position in its row and to the left of the original position. The g^{\prime} s are unmovable, and a given + cannot move past a g. Diagrams with the same occupied positions but different arrangements of + 's and g 's are counted separately. ${ }^{1}$

[^0]Example 1.3. Below, we give all K-Kohnert moves one step from D :

$$
\begin{aligned}
& D=\left(\begin{array}{ccc}
+ & \cdot & g+ \\
\cdot & + & + \\
\cdot & +
\end{array}\right) \mapsto\left(\begin{array}{ccc}
+ & . & g+ \\
+ & + & + \\
+ & +
\end{array}\right),\left(\begin{array}{ccc}
+ & \cdot & g+ \\
+ & g & + \\
+ & +
\end{array}\right), \\
& \left(\begin{array}{l}
+\quad . \\
++ \\
+ \\
+
\end{array}+. .\right),\left(\begin{array}{l}
+\quad . \\
+ \\
+ \\
+ \\
+ \\
+
\end{array}\right) .
\end{aligned}
$$

Let

$$
J_{\alpha}^{(\beta)}=\sum \beta^{\left(\# g^{\prime} \text { s appearing in } D\right)} x^{D} .
$$

Conjecture 1.4. $J_{\alpha}^{(-1)}=\Omega_{\alpha}$.
Conjecture 1.4 has been checked by computer, for a wide range of cases up to α being of size 12 , leaving us convinced. Clearly, $J_{\alpha}^{(0)}=\kappa_{\alpha}$, by Kohnert's theorem.
Example 1.5. Let $\alpha=(1,0,2)$. Then the diagrams contributing to $J_{(1,0,2)}$ are:

$$
\begin{gathered}
\text { Skyline }(1,0,2)=\left(\begin{array}{ll}
\cdot & \cdot \\
+ & + \\
+ & +
\end{array}\right),\left(\begin{array}{lll}
\cdot & + & \cdot \\
+ & \cdot & +
\end{array}\right),\left(\begin{array}{lll}
+ & \cdot & \cdot \\
+ & \cdot & +
\end{array}\right),\left(\begin{array}{lll}
+ & \cdot & \cdot \\
+ & + & .
\end{array}\right),\left(\begin{array}{ll}
\cdot & + \\
+ & +
\end{array}\right) ; \\
\left(\begin{array}{lll}
+ & g & \cdot \\
+ & \cdot & +
\end{array}\right),\left(\begin{array}{ll}
+ & g \\
+ & +
\end{array}\right),\left(\begin{array}{lll}
+ & \cdot & \cdot \\
+ & + & g
\end{array}\right),\left(\begin{array}{ll}
\cdot & + \\
+ & + \\
+ & \\
+
\end{array}\right),\left(\begin{array}{lll}
\cdot & + & g \\
+ & \cdot & +
\end{array}\right),\left(\begin{array}{ll}
+ & \cdot \\
+ & \\
+ & +
\end{array}\right) ;\left(\begin{array}{lll}
+ & g & \cdot \\
+ & + & g
\end{array}\right) ;\left(\begin{array}{lll}
+ & g & g \\
+ & \cdot & +
\end{array}\right) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
J_{(1,0,2)}= & \left(x_{1} x_{3}^{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right) \\
& \quad-\left(x_{1}^{2} x_{2} x_{3}+x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}\right)+\left(x_{1}^{2} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}^{2}\right) .
\end{aligned}
$$

The lowest degree homogeneous component of Ω_{α} is κ_{α}. Hence any $f \in$ Pol is a possibly infinite linear combination of the Ω_{α} 's. Finiteness is asserted in [11, Chapter 5]. We show in Section 4.2 that the J_{α} 's also form a (finite) basis.
1.4. Grothendieck polynomials. The Grothendieck polynomial [17] is defined using the isobaric divided difference operator whose action on $f \in$ Pol is given by:

$$
\pi_{i}(f)=\partial_{i}\left(\left(1-x_{i+1}\right) f\right)
$$

(Once again, these operators are known to satisfy the braid relations.) Declare $\mathfrak{G}_{w_{0}}(X)=$ $x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}$ where w_{0} is the long element in S_{n}. Set $\mathfrak{G}_{w}(X)=\pi_{i}\left(\mathfrak{G}_{w s_{i}}\right)$ if i is an ascent of w. The Grothendieck polynomials are known to lift $\left\{s_{\lambda}\right\}$ to Pol.

One has $\mathfrak{G}_{w}=\mathfrak{S}_{w}+$ (higher degree terms). We now state the A. Kohnert's conjecture [10] for \mathfrak{S}_{w}. Starting with Rothe (w), the Kohnert's rule generates diagrams D by applying the same rules as described for his rule for κ_{α}. Then $\mathfrak{S}_{w}=\sum x^{D}$; the sum is over all such D.

Analogously, we define

$$
K_{w}^{(\beta)}=\sum_{D} \beta^{\left(\# g^{\prime} \text { s appearing in } D\right)} \mathbf{x}^{D}
$$

where the sum is over all diagrams D generated by the K-Kohnert rule. For example, if $w=3142$ the diagrams contributing to $K_{w}^{(\beta)}$ are
and hence correspondingly, $K_{3142}^{(-1)}=\left(x_{1}^{2} x_{3}+x_{1}^{2} x_{2}\right)-\left(x_{1}^{2} x_{2} x_{3}\right)$.
Conjecture 1.6. $K_{w}^{(-1)}=\mathfrak{G}_{w}$.
Note, $K_{w}^{(0)}=\mathfrak{S}_{w}$ is precisely Kohnert's conjecture. Conjecture 1.6 has been checked by computer for $n \leq 7$, and extensively for larger n. While Kohnert's rule for \mathfrak{S}_{w} is handy, it remains mysterious, even after [25]. Conjectures 1.4 and 1.6 represent a return to Kohnert's conjecture (albeit after introducing a parameter β).

2. Proof of Theorem 1.1

2.1. Reduced word combinatorics. Given $w \in S_{n}$, let

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots a_{\ell(w)}\right) \text { and } \mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{\ell(w)}\right)
$$

In connection to [1], we say the pair (\mathbf{a}, \mathbf{i}) is a stable compatible pair for w if $s_{a_{1}} \cdots s_{a_{\ell(w)}}$ is a reduced word for w and the following two conditions on i hold:

$$
\text { (cs.1) } 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{\ell(w)}<n \text {; }
$$

(cs.2) $a_{j}<a_{j+1} \Longrightarrow i_{j}<i_{j+1}$.
We will identify w with a and the associated reduced word.
The Edelman-Greene correspondence [6] (the same basic construction is used in [17]) is a bijection

$$
\text { EGLS : }(\mathbf{a}, \mathbf{i}) \mapsto(T, U)
$$

where

- T is an increasing tableau such that $\operatorname{row}(T)$ is a reduced word for \mathbf{a}; and
- U is a semistandard tableau whose multiset of labels is precisely those in i, and which has the same shape as T.

EGLS (column) insertion: We insert a from left to right, starting with a_{1}. When we reach step j of this process, we initially insert a_{j} into the leftmost column (of what will be T). If there are no labels strictly larger than a_{j}, we place a_{j} at the bottom of that column. If $a_{j}+t$ for $t>2$ appears, we bump this $a_{j}+t$ to the next column to the right, replacing it with a_{j}. The same holds if $a_{j}+1$ appears but not a_{j}. Finally, if both $a_{j}+1$ and a_{j} already appear, we insert $a_{j}+1$ into the next column to the right. Since a is assumed to be reduced, the above enumerates all possibilities. Finally at step j a new box is created at a corner; in what will be U we place i_{j}.
Mildly abusing terminology, let $\operatorname{EGLS}(\mathbf{a})=T$.
We will need another standard notion in the subject. Two reduced words a and \mathbf{a}^{\prime} for the same permutation are in the same Coxeter-Knuth class if $\operatorname{EGLS}(\mathbf{a})=\operatorname{EGLS}\left(\mathbf{a}^{\prime}\right)=T$.

This T represents the class. This equivalence relation \sim on reduced words is defined by the symmetric and transitive closure of the relations:

$$
\begin{align*}
\mathbf{A} i(i+1) i \mathbf{B} & \sim \mathbf{A}(i+1) i(i+1) \mathbf{B} \tag{4}\\
\mathbf{A} a c b \mathbf{B} & \sim \mathbf{A} c a b \mathbf{B} \\
\mathbf{A} b a c \mathbf{B} & \sim \mathbf{A} b c a \mathbf{B}
\end{align*}
$$

where $a<b<c$. In particular, it is true that a $\sim \operatorname{row}(\operatorname{EGLS}(\mathbf{a}))$.
2.2. Formulas for Schubert polynomials. A stable compatible pair (\mathbf{a}, \mathbf{i}) is a compatible pair for w if in addition to (cs.1) and (cs.2) the following holds:
(cs.3) $i_{j} \leq a_{j}$.
Let Compatible (w) be the set of compatible sequences for w. A rule of [1] states:

$$
\begin{equation*}
\mathfrak{S}_{w}(X)=\sum_{(\mathbf{a}, \mathbf{i}) \in \operatorname{Compatible}(w)} \mathrm{x}^{\mathbf{i}} \tag{5}
\end{equation*}
$$

A descent of w is an index j such that $w(j)>w(j+1)$. Let Descents (w) be the set of descents of w. The following is [4, Corollary 3]:
Theorem 2.1. Let $w \in S_{n}$ and suppose Descents $(w) \subseteq\left\{d_{1}<d_{2}<\ldots<d_{k}\right\}$. Then

$$
\begin{equation*}
\mathfrak{S}_{w}(X)=\sum_{\lambda^{1}, \ldots, \lambda^{k}} c_{\lambda^{1}, \ldots, \lambda^{k}}^{w} s_{\lambda^{1}}\left(X_{1}\right) \cdots s_{\lambda^{k}}\left(X_{k}\right) \tag{6}
\end{equation*}
$$

where $c_{\lambda^{1}, \ldots, \lambda^{k}}^{w}$ counts the number of tuples of increasing tableaux $\left(T_{1}, \ldots, T_{k}\right)$ where
(i) T_{i} has shape λ^{i};
(ii) $\min T_{1}>0, \min T_{2}>d_{1}, \ldots, \min T_{k}>d_{k-1}$; and
(iii) $\operatorname{row}\left(T_{1}\right) \cdots \operatorname{row}\left(T_{k}\right)$ is a reduced word of w.

Assume for the remainder of the proof that

$$
\begin{equation*}
\operatorname{Descents}(w) \subseteq\left\{d_{1}<d_{2}<\ldots<d_{k}\right\} \tag{7}
\end{equation*}
$$

Let

$$
\operatorname{Tuples}(w)=\left\{\left[\left(T_{1}, U_{1}\right),\left(T_{2}, U_{2}\right), \ldots,\left(T_{k}, U_{k}\right)\right]\right\}
$$

where the T_{i} 's satisfy (i), (ii) and (iii) from Theorem 2.1, and each U_{i} is a semistandard tableau of shape λ^{i} using the labels $d_{i-1}+1, d_{i-1}+2, \ldots, d_{i}\left(d_{0}=0\right)$.
2.3. "Splitting" the EGLS correspondence. Assuming (7) we define:

$$
\Phi: \text { Compatible }(w) \rightarrow \text { Tuples }(w) .
$$

Description of Φ (using EGLS): Uniquely split $(\mathbf{a}, \mathbf{i}) \in$ Compatible as follows

$$
\begin{equation*}
\left(\left(\mathbf{a}^{(1)}, \mathbf{i}^{(1)}\right),\left(\mathbf{a}^{(2)}, \mathbf{i}^{(2)}\right), \cdots,\left(\mathbf{a}^{(k)}, \mathbf{i}^{(k)}\right)\right) \tag{8}
\end{equation*}
$$

where
$\bullet \mathbf{a}=\mathbf{a}^{(1)} \ldots \mathbf{a}^{(k)}$ and $\mathbf{i}=\mathbf{i}^{(1)} \ldots \mathbf{i}^{(k)}$ ("..." means concatenation); and

- the entries of $i^{(j)}$ are contained in the set $\left\{d_{j-1}+1, d_{j-1}+2, \cdots, d_{j}\right\}$.

Now define

$$
\Phi((\mathbf{a}, \mathbf{i})):=\left(\operatorname{EGLS}\left(\mathbf{a}^{(1)}, \mathbf{i}^{(1)}\right), \cdots, \operatorname{EGLS}\left(\mathbf{a}^{(k)}, \mathbf{i}^{(k)}\right)\right)
$$

Proposition 2.2. The map Φ : Compatible $(w) \rightarrow \operatorname{Tuples}(w)$ is well-defined and a bijection.
Proof. Φ is well-defined: The condition (i) is just says T_{j} and U_{j} have the same shape, which is true by EGLS's description. For (ii), the splitting says each label in $\mathbf{i}^{(j)}$ is strictly bigger than d_{j-1}. Now by (cs.3), each label in $\mathbf{a}^{(j)}$ is strictly bigger than d_{j-1} as well. By EGLS's definition, the set of labels appearing in T_{j} is the same as that of $\mathbf{a}^{(j)}$; hence (ii) holds. Lastly, $\operatorname{row}\left(T_{j}\right)$ is a reduced word for $a^{(j)}$. Then (iii) is clear.
Φ is a bijection: Since EGLS is a bijective correspondence, clearly Φ is an injection. Consider the weight function on Compatible (w) that assigns (\mathbf{a}, \mathbf{i}) weight $\mathbf{x}^{\mathbf{i}}$ and assigns $\left[\left(T_{1}, U_{1}\right), \ldots,\left(T_{k}, U_{k}\right)\right]$ the weight $\mathbf{x}^{U_{1}} \cdots \mathbf{x}^{U_{k}}$, where $\mathbf{x}^{U_{i}}$ is the usual monomial associated to the tableau U_{i}. Then clearly Φ is a weight-preserving map (since EGLS is similarly weight-preserving). Hence the surjectivity of Φ holds by (5) and Theorem 2.1.

See [18, Section 5] for a proof of Theorem 2.1 which is close to the study of the split EGLS correspondence (the argument constructs certain crystal operators).
2.4. The tableau $T[\alpha]$. Recall $w[\alpha] \in S_{\infty}$ satisfies $\operatorname{code}(w[\alpha])=\alpha$. Let \prec be the pure reverse lexicographic total ordering on monomials. The Schubert polynomial $\mathfrak{S}_{w[\alpha]}$ has leading term \mathbf{x}^{α} (with respect to \prec). The same is true of κ_{α} (see [21, Corollary 7]) so

$$
\begin{equation*}
\mathfrak{S}_{w[\alpha]}=\kappa_{\alpha}+\text { linear combination of other Key polynomials. } \tag{9}
\end{equation*}
$$

Given an increasing tableau U, the nil left Key $K_{-}^{0}(U)$ is defined by [16] (cf. [21, p.111114]). Let $\operatorname{sort}(\alpha)$ be the partition obtained by rearranging α into weakly decreasing order. Also let content (T) the usual content vector of a semistandard tableau T. This is a result of A. Lascoux-M.-P. Schützenberger (cf. [21, Theorem 4]):

Theorem 2.3.

$$
\mathfrak{S}_{w}(X)=\sum \kappa_{\operatorname{content}\left(K_{-}^{0}(U)\right)}
$$

where the sum is over all increasing tableaux U of shape $\operatorname{sort}(\alpha)$ with $\operatorname{row}(U)=w$.
Thus, by (9) combined with Theorem 2.3 there exists a unique increasing tableau $U[\alpha]$ of shape $\operatorname{sort}(\alpha)$ with $\operatorname{row}(U[\alpha])=w[\alpha]$ and such that $\alpha=\operatorname{content}\left(K_{-}^{0}(U[\alpha])\right)$.

Let $F_{w}=\lim _{k \rightarrow \infty} \mathfrak{S}_{1^{k} \times w}$ be the stable Schubert polynomial associated to w. This is a symmetric polynomial in infinitely many variables. So therefore one has an expansion

$$
\begin{equation*}
F_{w}=\sum_{\lambda} a_{w, \lambda} s_{\lambda}, \tag{10}
\end{equation*}
$$

where the $a_{w, \lambda} \in \mathbb{Z}_{\geq 0}$ are counted by increasing tableaux A of shape λ with $\operatorname{row}(A)=w$. We mention that (6) is derived from (10) in [4]; thereby, (10) may be seen as a specialization of (6).
In [24, Theorem 4.1], it is shown $a_{w, \mu(w)^{\prime}}=1$ for a certain explicitly described "maximal" $\mu^{\prime}(w)$. Moreover a simple description of the witnessing tableau $A[\alpha]$ is given. Straightforwardly, $\mu^{\prime}(w[\alpha])=\operatorname{sort}(\alpha)$. Then $T[\alpha]$ is precisely the witnessing tableau $A[\alpha]$ for $a_{w[\alpha], \lambda(w[\alpha])}$ (after accounting for the fact that [24]'s conventions use $F_{w[\alpha]}$ for what we call $F_{\left.w[\alpha]^{-1}\right)}$. We leave the details to the reader.

Finally since the expansion of Theorem 2.3 refines (10); see, e.g., [21], we have:

$$
\begin{equation*}
T[\alpha]=A[\alpha]=U[\alpha] . \tag{11}
\end{equation*}
$$

So, $T[\alpha]$ is an increasing tableau of shape sort $[\alpha]$ with the properties that $\operatorname{row}(T[\alpha])=w[\alpha]$ and content $\left(K_{-}(T[\alpha])\right)=\alpha$.
2.5. Conclusion of the proof of Theorem 1.1: From the definition of Rothe $(w[\alpha])$:

Lemma 2.4. The descents of $w[\alpha]$ are contained in the set of descents $d_{1}<d_{2}<\ldots<d_{k}$ of α.
By Lemma 2.4 combined with Theorem 2.1 we obtain:

$$
\begin{equation*}
\mathfrak{S}_{w[\alpha]}(X)=\sum_{(\mathbf{a}, \mathbf{i})} \mathbf{x}^{\mathbf{i}}=\sum_{\lambda^{1}, \ldots, \lambda^{k}} c_{\lambda^{1}, \ldots, \lambda^{k}}^{w[\alpha]} s_{\lambda^{1}}\left(X_{1}\right) \cdots s_{\lambda^{k}}\left(X_{k}\right) . \tag{12}
\end{equation*}
$$

We recall the following formula [21, Theorem 5]:
Theorem 2.5. Fix an increasing tableau T with content $\left(K_{-}^{0}(T)\right)=\alpha$. Then

$$
\kappa_{\alpha}=\sum_{(\mathbf{a}, \mathbf{i})} \mathbf{x}^{\mathbf{i}}
$$

where the sum is over compatible sequences (\mathbf{a}, \mathbf{i}) satisfying (cs.1), (cs.2), (cs.3) and EGLS(\mathbf{a}) $=T$.
In view of (11) and the properties about $T[\alpha]$ stated immediately after said equation, we may set $T=T[\alpha]$ in Theorem 2.5 to obtain a monomial expansion formula for κ_{α} in terms of compatible pairs. Thus, our theorem statement is that κ_{α} is precisely equal to a prescribed subset of the summands of (12).

Thus to complete the proof, restrict Φ to those ($\mathbf{a}, \mathbf{i}) \in \operatorname{Compatible}(w[\alpha])$ such that $\operatorname{EGLS}(\mathbf{a})=T[\alpha]$. Consider $\Phi(\mathbf{a}, \mathbf{i})=\left[\left(T_{1}, U_{1}\right), \ldots,\left(T_{k}, U_{k}\right)\right]$. Since $\mathbf{a}^{(i)} \sim \operatorname{row}\left(T_{i}\right)$, by (4) we see

$$
\begin{equation*}
\operatorname{row}\left(T_{1}\right) \cdots \operatorname{row}\left(T_{k}\right) \sim \mathbf{a}^{(1)} \cdots \mathbf{a}^{(k)}=\mathbf{a} . \tag{13}
\end{equation*}
$$

However, since we have assumed $\operatorname{EGLS}(\mathbf{a})=T[\alpha]$, therefore:

$$
\begin{equation*}
\operatorname{EGLS}\left(\operatorname{row}\left(T_{1}\right) \cdots \operatorname{row}\left(T_{k}\right)\right)=T[\alpha] \tag{14}
\end{equation*}
$$

The other two requirements on $\left(T_{1}, \ldots, T_{k}\right)$ hold since Φ is well-defined (Proposition 2.2). The desired conditions on $\left(U_{1} \ldots, U_{k}\right)$ follow from Φ 's well-definedness and Lemma 2.4.

Conversely, suppose $\left[\left(T_{1}, U_{1}\right), \ldots,\left(T_{k}, U_{k}\right)\right]$ has $\left(T_{1}, \ldots, T_{k}\right)$ satisfying Theorem 1.1's conditions. Since Φ is a bijection (Proposition 2.2), $\Phi^{-1}\left(\left[\left(T_{1}, U_{1}\right), \ldots,\left(T_{k}, U_{k}\right)\right]\right)=(\mathbf{a}, \mathbf{i}) \in$ Compatible $(w[\alpha])$. Also, by (13), $\mathbf{a} \sim \operatorname{row}\left(T_{1}\right) \cdots \operatorname{row}\left(T_{k}\right)$. Now, we assumed (14) holds. Hence, EGLS $(\mathbf{a})=T[\alpha]$ as desired.

3. Additional remarks

3.1. Comments on Theorem 1.1. Since κ_{α} specialize non-symmetric Macdonald polynomials (see, e.g., [8, Section 5.3]), can one extend Theorem 1.1 in that direction?

Theorem 1.1 implies that the Key module of [21, Section 5] should have an action of $G L\left(d_{1}\right) \times G L\left(d_{2}-d_{1}\right) \times \cdots \times G L\left(d_{k}-d_{k-1}\right)$ such that the character is κ_{α}.
V. Reiner suggests a variation of Theorem 1.1 using the plactic theory. The derivation should be similar, using formulas from [22]. However we are missing the analogue of [4, Corollary 4]; cf. [9, Sections 7, 8]. Theorem 1.1 naturally generalizes to Grothendieck polynomials, using [3, 2]; details may appear elsewhere.
3.2. J_{α} 's form a (finite) basis of Pol. Clearly, $J_{\alpha}(X)=\mathbf{x}^{\alpha}+\sum_{\beta \prec \alpha} c_{\beta} \mathbf{x}^{\beta}$. One decomposes $f \in$ Pol into a possibly infinite sum of J_{α} 's:

$$
\begin{equation*}
f=\sum_{\alpha} g_{\alpha} J_{\alpha} \tag{15}
\end{equation*}
$$

That is, find the \prec largest monomial $\mathbf{x}^{\theta_{0}}$ appearing in $f^{(0)}:=f$ (say with coefficient $c_{\theta_{0}}$) and let $f^{(1)}:=f-c_{\theta_{0}} \cdot J_{\theta_{t}}$. Thus $f^{(1)}$ only contains monomials strictly smaller in the \prec ordering. Now repeat, defining $f^{(t+1)}:=f^{(t)}-c_{\theta_{t}} J_{\theta_{t}}$ where $\mathrm{x}^{\theta_{t}}$ is the \prec-largest monomial appearing in $f^{(t)}$ etc. Since J_{α} is not homogeneous, each step t potentially introduces \prec-smaller monomials but of higher degree. However, we claim:
Proposition 3.1. The expansion (15) is finite.
Proof. By the K-Kohnert rule, each β that appears in J_{α} is contained in the smallest rectangle R that contains α. So the above procedure only involves the finitely many diagrams contained in R for one of the finitely many initial $\alpha \in \mathbb{Z}_{\geq 0}^{\infty}$ such that \mathbf{x}^{α} is in f.
3.3. More on the interplay of Grothendieck and the Ω polynomials. M. Shimozono has suggested that the expansion of \mathfrak{G}_{w} into Ω_{α} should alternate in sign, by degree. An explicit rule exhibiting this has been conjectured by V . Reiner and the second author.

Acknowledgements

AY thanks Jim Haglund, Alain Lascoux, Vic Reiner and Mark Shimozono for inspiring discussions and correspondence. AY also thanks Oliver Pechenik and Luis Serrano for helpful comments. We thank the anonymous referee for helpful suggestions concerning the presentation. This project was initiated during a summer undergraduate research experience at UIUC supported by NSF grant DMS 0901331. AY also was supported by NSF grant DMS 1201595 and a Helen Corley Petit endowment at UIUC. ${ }^{2}$

References

[1] S. Billey, W. Jockush and R. Stanley, Some Combinatorial Properties of Schubert Polynomials, J. of Algebraic Comb. Vol. 2 Num. 4, 1993, 345-374.
[2] A. Buch, A. Kresch, M. Shimozono, H. Tamvakis and A. Yong, Stable Grothendieck polynomials and Ktheoretic factor sequences, Math. Ann. 340 (2008), no. 2, 359-382.
[3] A. S. Buch, A. Kresch, H. Tamvakis and A. Yong, Grothendieck polynomials and quiver formulas, Amer. J. Math., 127 (2005), 551-567.
[4] , Schubert polynomials and quiver formulas, Duke Math J., Volume 122 (2004), Issue 1, 125-143.
[5] M. Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. 98(1974), 163-172.
[6] P. Edelman and C. Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42-99.
[7] S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proc. 6th Intern. Conf. on Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, 183-190.
[8] J. Haglund, M. Haiman and N. Loehr, A combinatorial formula for non-symmetric Macdonald polynomials, Amer. J. of Math., 103 (2008), pp. 359-383.
[9] A. Knutson, E. Miller and M. Shimozono, Four positive formulae for type A quiver polynomials, Invent. Math. 166(2006), 229-325.
[10] A. Kohnert, Weintrauben, Polynome, Tableaux, Bayreuth Math. Schrift. 38(1990), 1-97.
[11] A. Lascoux, Polynomials, 2013. http://phalanstere.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf

[^1][12] _ Schubert \& Grothendieck: un bilan bidécennal, Sém. Lothar. Combin. 50 (2003/04), Art. B50i.
[13] _, Transition on Grothendieck polynomials, Physics and Combinatorics, 2000 (Nagoya), pp. 164-179, World Scientific Publishing, River Edge (2001).
[14] , Symmetric Functions and Combinatorial Operators on Polynomials, (CBMS Regional Conference Series in Mathematics), American Mathematical Society, Providence, RI, 2003. xii+268 pp.
[15] A. Lascoux and M.-P. Schützenberger, Keys and standard bases, in "Tableaux and Invariant Theory", IMA Volumes in Math and its Applications (D. Stanton, Ed.), Vol. 19, pp. 125-144, Southend on Sea, UK, 1990.
[16] \qquad , Tableaux and non-commutative Schubert polynomials, Funct. Anal. Appl. 23(1989), 63-64.
[17] \qquad Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11m 629-633.
[18] C. Lenart, A unified approach to combinatorial formulas for Schubert polynomials, J. Algebraic. Combin., 20(2004), 263-299.
[19] C. Lenart, S. Robinson and F. Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, Amer. J. Math. 128 (2006), no. 4, 805-848.
[20] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci, American Mathematical Society, Providence, RI, 2001.
[21] V. Reiner and M. Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Comb. Theory. Ser. A., 70(1995), 107-143.
[22] \qquad , Plactification, J. Alg. Comb., 4(1995), 331-351.
[23] C. Ross, Combinatorial formulae for Grothendieck-Demazure and Grothendieck polynomials, REU report, 2011. http://www.math.uiuc.edu/~ayong/student_projects/Ross.pdf
[24] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Comb. 5, 359372 (1984).
[25] R. Winkel, Diagram rules for the generation of Schubert polynomials, J. Combin. Th. A., 86(1999), 14-48.
Department of Industrial Engineering and Management Sciences, Northwestern UniVERSITY, EVANSTON, IL 60208

E-mail address: ColleenRoss2012@u.northwestern.edu
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

E-mail address: ayong@illinois.edu

[^0]: ${ }^{1}$ Added March 10, 2017: The published version misstates this conjecture by allowing boxes to move past g 's. However, this version is consistent with the older report [23] (and was what was computationally checked there). The second author apologizes for this error.

[^1]: ${ }^{2}$ Added March 10, 2017: I thank Cara Monical, Oliver Pechenik and Dominic Searles for pointing out a (now corrected) misstatement of Conjecture 1.4 and Conjecture 1.6.

