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ABSTRACT. We present combinatorial rules (one theorem and two conjectures) concerning
three bases of Z[x1, x2, ....]. First, we prove a ”splitting” rule for the basis of Key polyno-
mials [Demazure ’74], thereby establishing a new positivity theorem about them. Second,
we introduce an extension of [Kohnert ’90]’s ”moves” to conjecture the first combinato-
rial rule for a certain deformation [Lascoux ’01] of the Key polynomials. Third, we use
the same extension to conjecture a new rule for the Grothendieck polynomials [Lascoux-
Schützenberger ’82].

In memory of Alain Lascoux, who inspired this paper one night in Osaka

1. INTRODUCTION

1.1. Overview. This paper contributes to the study of certain bases of the ring of poly-
nomials Pol = Z[x1, x2, . . .] that are defined by symmetrizing operators. Our two main
sources on this subject, and the specific perspective we pursue, are A. Lascoux’s books
[14, 11].

The Schur basis of the ring Λ of symmetric polynomials is central to algebraic combi-
natorics in at least two ways. These polynomials have fundamental applications outside
of the theory of symmetric functions, specifically to representation theory of the sym-
metric group and of the general linear group, and to Schubert calculus, see, e.g., [20].
Moreover, understanding combinatorial descriptions of the Schur polynomials has led to
a rich theory of Young tableaux. In particular, the problem of how to multiply two Schur
polynomials, and expand back into the Schur basis, is important in the aformentioned
applications. This problem is solved by the Littlewood-Richardson rule.

Now, since the ring of symmetric polynomials is a subring of Pol, one considers the
following basic question [11]:

How does one lift properties of Λ (and its Schur basis) to the entirety of Pol?

A number of bases, that may be considered natural lifts of the Schur basis, are considered
in [14, 11]. These include the Schubert, Grothendieck, Macdonald and Key polynomials;
we will also consider a deformation of the Key polynomials defined by A. Lascoux [13].
These are lifts of the Schur basis in the sense that a certain subset in each of these families
is precisely the Schur basis, or otherwise deforms the elements of the Schur basis. In fact,
like the Schur polynomials, each of these families have applications to representation
theory and geometry.

Now, one would like to find combinatorial descriptions for the polynomials in each
of these families. Indeed, such descriptions exist. Yet at present, there is no analogue
of the Littlewood-Richardson rule. That is, for each basis, one desires a combinatorial
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description of how to multiply and expand in the basis so that one recovers a Littlewood-
Richardson rule in the special case of Schur polynomials. For instance, for the case of
Schubert polynomials, and more generally, the case of Grothendieck polynomials, this is
a longstanding open problem in combinatorial Schubert calculus, cf. [20].

There is a close tie between Littlewood-Richardson rules and the Young tableau de-
scription of Schur polynomials. Therefore, by analogy, one would like to find alternative
combinatorial descriptions of the aforementioned bases of Pol. The hope is that such
alternatives might shed light on finding corresponding generalizations of the Littlewood-
Richardson rule.

Our work consists of a new combinatorial description for three of the aforementioned
bases of polynomials. We give one theorem and two conjectures, which we summarize as
follows:

First, we prove a “splitting” rule for the basis of Key polynomials {κα|α ∈ Z∞≥0}, thereby
establishing a new positivity theorem about these polynomials. This family was intro-
duced by [5] and first studied combinatorially in [16, 15]. Combinatorial rules for their
monomial expansion are known, see, e.g., [16, 15, 21, 8]. Our rule refines the rule of [21,
Theorem 5(1)]. Our rule is also analogous to the splitting rule [4, Corollary 3] for the basis
of Schubert polynomials {Sw|w ∈ S∞}.

Second, we investigate the aforementioned basis of polynomials {Ωα|α ∈ Z∞≥0} defined
by A. Lascoux [13] that deforms the Key basis. By extending the Kohnert moves of [10] we
conjecturally give the first combinatorial rule for the Ω-polynomials.

Third, in [10], the Kohnert moves were used to conjecture the first combinatorial rule for
Schubert polynomials (a proof was later presented in [25]). Similarly, we use the extended
Kohnert moves to give a conjecture for the basis of Grothendieck polynomials {Gw|w ∈ S∞}
[17]. This rule appears significantly different than earlier (proved) rules, such as those in
[7, 13, 3, 19].

1.2. Splitting Key polynomials. Let S∞ be the group of permutations of N with finitely
many non-fixed points. This group acts on Pol by permuting the variables. Let si be the
simple transposition interchanging xi and xi+1. The divided difference operator acts on
Pol by

∂i =
1− si

xi − xi+1

.

Define the Demazure operator by setting

πi(f) = ∂i(xi · f), for f ∈ Pol.

Let α = (α1, α2, . . .) ∈ Z∞≥0 and assume throughout that |α| =
∑

i αi < ∞. Define the
Key polynomial κα to be

xα := xα1
1 x

α2
2 · · · , if α is weakly decreasing.

Otherwise, set

κα = πi(κα̂) where α̂ = (. . . , αi+1, αi, . . .) and αi+1 > αi.

(The πi’s (and ∂i’s also) are well-known to satisfy the braid relations for Sn and so the κα’s
are independent of the order in which the πi’s are applied.) Since the leading term (under
the pure reverse lexicographic order) of κα is xα, the Key polynomials form a Z-basis of
Pol.
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The Key polynomials lift the Schur polynomials: when

(1) α = (α1, α2, . . . , αt, 0, 0, 0, . . .), where α1 ≤ α2 ≤ . . . ≤ αt, then

(2) κα = s(αt,··· ,α2,α1)(x1, . . . , xt).

A descent of α is an index i such that αi ≥ αi+1; a strict descent is an index i such that
αi > αi+1. Fix descents d1 < d2 < . . . < dk of α containing all strict descents of α. Since πi
is a symmetrizing operator, κα is separately symmetric in each collection:

X1 = {x1, x2, . . . , xd1}, X2 = {xd1+1, xd1+2, . . . , xd2}, . . . , Xk = {xdk−1+1, xdk−1+2, . . . , xdk}.
(The variables xdk+1, xdk+2, · · · do not appear in κα.) Therefore, uniquely:

(3) κα(X) =
∑

λ1,...,λk

Eαλ1,...,λk sλ1(X1) · · · sλk(Xk),

where each λi is a partition. A priori one only knows Eα
λ1,...,λk

∈ Z.

The Rothe diagram of a permutation w ∈ Sn is

Rothe(w) = {(x, y)|y < w(x) and x < w−1(y)} ⊂ [n]× [n]

(indexed so that the southwest corner is labeled (1, 1)). The code of w, denoted code(w) ∈
Zn≥0 counts the number of boxes in columns of Rothe(w) (from left to right). Given α ∈
Z∞≥0, there is a unique w[α] ∈ S∞ such that code(w[α]) = α (up to trailing 0’s); see, e.g.,
[20, Proposition 2.1.2]. We will need a special tableau coming from [24, Section 4]:
The tableau T [α]: Givenw[α], i1 < i2 < . . . < ia in the first column of T [α] are given by hav-
ing ij be the largest descent position smaller than ij+1 in the permutationwsiasia−1 · · · sij+1

.
The next column of T [α] is similarly determined, starting from wsia · · · si1 , etc.

An increasing tableau T of shape λ is a filling with strictly increasing rows and columns.
(In fact, T [α] is an increasing tableau.) Let row(T ) be the reading word of T , obtained by
reading the entries of T along rows, from right to left, and from top to bottom. Let min(T )
be the smallest label in T . Finally, given a reduced word a = a1a2 . . . am, let EGLS(a) be the
output of the Edelman-Greene correspondence (see Section 2.1).

The following result shows Eα
λ1,...,λk

∈ Z≥0. It is analogous to one on Schubert polyno-
mials [4, Corollary 3] (which our proof uses).

Theorem 1.1. The number Eα
λ1,...,λk

counts sequences of increasing tableaux (T1, T2, . . . , Tk) where

• Ti is of shape λi;
• minT1 > 0,minT2 > d1,minT3 > d2, . . . ,minTk > dk−1; and
• row(T1) · row(T2) · · · row(Tk) is a reduced word of w[α] such that
EGLS(row(T1) · row(T2) · · · row(Tk)) = T [α].

When dj = j for all j ≥ 1, Theorem 1.1 specializes to an instance of the monomial
expansion formula [21, Theorem 5(1)] for κα (restated as Theorem 2.5 below). Also, when
(1) holds, k = 1, d1 = t and thus Theorem 1.1 gives (2).

Example 1.2. The (strict) descents of α = (1, 3, 0, 2, 2, 1) are d1 = 2, d2 = 5, and

κ1,3,0,2,2,1 = s3,2(x1, x2)s2,1,1(x3, x4, x5) + s3,2(x1, x2)s2,1(x3, x4, x5)s1(x6)

+ s3,1(x1, x2)s2,2(x3, x4, x5)s1(x6) + s3,1(x1, x2)s2,2,1(x3, x4, x5).
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exhibits the claimed non-negativity of Theorem 1.1.

Also, w[α] = 2516743 (one line notation) and T [α] = 1 3 4
2 5
4 6
5
6

. Thus, E (1,3,0,2,2,1)(3,2),(2,1,1),∅ =

E (1,3,0,2,2,1)(3,2),(2,1),(1) = E (1,3,0,2,2,1)(3,1),(2,2),(1) = E (1,3,0,2,2,1)(3,1),(2,2,1),∅ = 1 are respectively witnessed by 1 3 4
2 5

, 4 6
5
6

, ∅

 ,

(
1 3 4
2 5

, 4 6
5

, 6
)
,

(
1 3 4
2

, 4 5
5 6

, 6
)
, and

 1 3 4
2

, 4 5
5 6
6

, ∅

 .

For example, for the leftmost sequence, EGLS(43152 · 6456 · ∅) = T [α] holds. �

1.3. The Ω polynomials. A. Lascoux [13] defines Ωα for α = (α1, α2, . . .) ∈ Z∞≥0 by replac-
ing πi in the definition of the Key polynomials with the operator defined by

π̃i(f) = ∂i(xi(1− xi+1)f).

(These operators also can be seen to satisfy the braid relations; cf. [11, Chapter 1.4].)
The initial condition is Ωα = xα(= κα), if α is weakly decreasing. The Ω polynomials

deform the Key polynomials. While at present there is no known geometric or represen-
tation theoretic intepretation of the Ω polynomials, as is pointed out in loc. cit., many of
the known relationships between the Key and Schubert basis extend to ones between the
Ω and Grothendieck basis (the latter family is formally recalled in the next subsection).

The skyline diagram is Skyline(α) = {(i, y) : 1 ≤ y ≤ αi} ⊂ N2. Graphically, it is a
collection of columns αi high. For instance,

Skyline(1, 3, 0, 2, 2, 1) =

. + . . . .
. + . + + .
+ + . + + +


Beginning with Skyline(α), Kohnert’s rule [10] generates diagrams D by sequentially

moving any + at the top of its column to the rightmost open position in its row and to its
left. (The result of such a move need not be the skyline of any γ ∈ Z∞≥0.) Let xD =

∏
i x

di
i

be the column weight where di is the number of +’s in column i of D. If the same D
results from a different sequence of moves, it only counts once. Kohnert’s theorem states
κα =

∑
xD, where the sum is over all such D. Extending this, we introduce:

The K-Kohnert rule: Each + either moves as in Kohnert’s rule, or stays in place and
moves. That is, in the latter case, we mark the original position with a “g” and we place a
+ in the rightmost open position in its row and to the left of the original position. The g’s
are unmovable, and a given + cannot move past a g. Diagrams with the same occupied
positions but different arrangements of +’s and g’s are counted separately.1

1Added March 10, 2017: The published version misstates this conjecture by allowing boxes to move
past g’s. However, this version is consistent with the older report [23] (and was what was computationally
checked there). The second author apologizes for this error.
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Example 1.3. Below, we give all K-Kohnert moves one step from D:

D =

(
+ . g + .
. + + + +

)
7→
(

+ . g + .
+ . + + +

)
,

(
+ . g + .
+ g + + +

)
,

(
+ . g + .
+ + + + .

)
,

(
+ . g + .
+ + + + g

)
.

Let
J (β)
α =

∑
β(#g’s appearing in D)xD.

Conjecture 1.4. J (−1)
α = Ωα.

Conjecture 1.4 has been checked by computer, for a wide range of cases up to α being
of size 12, leaving us convinced. Clearly, J (0)

α = κα, by Kohnert’s theorem.

Example 1.5. Let α = (1, 0, 2). Then the diagrams contributing to J(1,0,2) are:

Skyline(1, 0, 2) =

(
. . +
+ . +

)
,

(
. + .
+ . +

)
,

(
+ . .
+ . +

)
,

(
+ . .
+ + .

)
,

(
. + .
+ + .

)
;

(
+ g .
+ . +

)
,

(
+ g .
+ + .

)
,

(
+ . .
+ + g

)
,

(
. + .
+ + g

)
,

(
. + g
+ . +

)
,

(
+ . g
+ . +

)
;

(
+ g .
+ + g

)
;

(
+ g g
+ . +

)
.

Thus

J(1,0,2) = (x1x
2
3 + x1x2x3 + x21x3 + x21x2 + x1x

2
2)

− (x21x2x3 + x21x
2
2 + x21x2x3 + x1x

2
2x3 + x1x2x

2
3 + x21x

2
3) + (x21x

2
2x3 + x21x2x

2
3).

The lowest degree homogeneous component of Ωα is κα. Hence any f ∈ Pol is a possibly
infinite linear combination of the Ωα’s. Finiteness is asserted in [11, Chapter 5]. We show
in Section 4.2 that the Jα’s also form a (finite) basis.

1.4. Grothendieck polynomials. The Grothendieck polynomial [17] is defined using
the isobaric divided difference operator whose action on f ∈ Pol is given by:

πi(f) = ∂i((1− xi+1)f).

(Once again, these operators are known to satisfy the braid relations.) Declare Gw0(X) =
xn−11 xn−22 · · ·xn−1 where w0 is the long element in Sn. Set Gw(X) = πi(Gwsi) if i is an ascent
of w. The Grothendieck polynomials are known to lift {sλ} to Pol.

One has Gw = Sw + (higher degree terms). We now state the A. Kohnert’s conjecture
[10] for Sw. Starting with Rothe(w), the Kohnert’s rule generates diagramsD by applying
the same rules as described for his rule for κα. Then Sw =

∑
xD; the sum is over all such

D.
Analogously, we define

K(β)
w =

∑
D

β(#g’s appearing in D)xD
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where the sum is over all diagrams D generated by the K-Kohnert rule. For example, if
w = 3142 the diagrams contributing to K(β)

w are

Rothe(3142) =


. . . .
. . . .
+ . + .
+ . . .

 ,


. . . .
. . . .
+ + . .
+ . . .

 ,


. . . .
. . . .
+ + g .
+ . . .

 .

and hence correspondingly, K(−1)
3142 = (x21x3 + x21x2)− (x21x2x3).

Conjecture 1.6. K(−1)
w = Gw.

Note, K(0)
w = Sw is precisely Kohnert’s conjecture. Conjecture 1.6 has been checked

by computer for n ≤ 7, and extensively for larger n. While Kohnert’s rule for Sw is
handy, it remains mysterious, even after [25]. Conjectures 1.4 and 1.6 represent a return
to Kohnert’s conjecture (albeit after introducing a parameter β).

2. PROOF OF THEOREM 1.1

2.1. Reduced word combinatorics. Given w ∈ Sn, let

a = (a1, a2, . . . a`(w)) and i = (i1, i2, . . . , i`(w)).

In connection to [1], we say the pair (a, i) is a stable compatible pair for w if sa1 · · · sa`(w)

is a reduced word for w and the following two conditions on i hold:

(cs.1) 1 ≤ i1 ≤ i2 ≤ · · · ≤ i`(w) < n;
(cs.2) aj < aj+1 =⇒ ij < ij+1.

We will identify w with a and the associated reduced word.
The Edelman-Greene correspondence [6] (the same basic construction is used in [17])

is a bijection
EGLS : (a, i) 7→ (T, U)

where

• T is an increasing tableau such that row(T ) is a reduced word for a; and
• U is a semistandard tableau whose multiset of labels is precisely those in i, and

which has the same shape as T .

EGLS (column) insertion: We insert a from left to right, starting with a1. When we reach
step j of this process, we initially insert aj into the leftmost column (of what will be T ). If
there are no labels strictly larger than aj , we place aj at the bottom of that column. If aj + t
for t > 2 appears, we bump this aj + t to the next column to the right, replacing it with aj .
The same holds if aj + 1 appears but not aj . Finally, if both aj + 1 and aj already appear,
we insert aj + 1 into the next column to the right. Since a is assumed to be reduced, the
above enumerates all possibilities. Finally at step j a new box is created at a corner; in
what will be U we place ij .

Mildly abusing terminology, let EGLS(a) = T .
We will need another standard notion in the subject. Two reduced words a and a′ for

the same permutation are in the same Coxeter-Knuth class if EGLS(a) = EGLS(a′) = T .
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This T represents the class. This equivalence relation ∼ on reduced words is defined by
the symmetric and transitive closure of the relations:

Ai(i+ 1)iB ∼ A(i+ 1)i(i+ 1)B(4)
AacbB ∼ AcabB

AbacB ∼ AbcaB

where a < b < c. In particular, it is true that a ∼ row(EGLS(a)).

2.2. Formulas for Schubert polynomials. A stable compatible pair (a, i) is a compatible
pair for w if in addition to (cs.1) and (cs.2) the following holds:

(cs.3) ij ≤ aj .

Let Compatible(w) be the set of compatible sequences for w. A rule of [1] states:

(5) Sw(X) =
∑

(a,i)∈Compatible(w)

xi.

A descent of w is an index j such that w(j) > w(j + 1). Let Descents(w) be the set of
descents of w. The following is [4, Corollary 3]:

Theorem 2.1. Let w ∈ Sn and suppose Descents(w) ⊆ {d1 < d2 < . . . < dk}. Then

(6) Sw(X) =
∑

λ1,...,λk

cwλ1,...,λksλ1(X1) · · · sλk(Xk)

where cw
λ1,...,λk

counts the number of tuples of increasing tableaux (T1, . . . , Tk) where

(i) Ti has shape λi;
(ii) minT1 > 0,minT2 > d1, . . . ,minTk > dk−1; and

(iii) row(T1) · · · row(Tk) is a reduced word of w.

Assume for the remainder of the proof that

(7) Descents(w) ⊆ {d1 < d2 < . . . < dk}.
Let

Tuples(w) = {[(T1, U1), (T2, U2), . . . , (Tk, Uk)]}
where the Ti’s satisfy (i), (ii) and (iii) from Theorem 2.1, and each Ui is a semistandard
tableau of shape λi using the labels di−1 + 1, di−1 + 2, . . . , di (d0 = 0).

2.3. “Splitting” the EGLS correspondence. Assuming (7) we define:

Φ : Compatible(w)→ Tuples(w).

Description of Φ (using EGLS): Uniquely split (a, i) ∈ Compatible as follows

(8)
(
(a(1), i(1)), (a(2), i(2)), · · · , (a(k), i(k))

)
where

• a = a(1) · · · a(k) and i = i(1) · · · i(k) (“· · · ” means concatenation); and
• the entries of i(j) are contained in the set {dj−1 + 1, dj−1 + 2, · · · , dj}.

Now define
Φ((a, i)) :=

(
EGLS(a(1), i(1)), · · · , EGLS(a(k), i(k))

)
.
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Proposition 2.2. The map Φ : Compatible(w)→ Tuples(w) is well-defined and a bijection.

Proof. Φ is well-defined: The condition (i) is just says Tj and Uj have the same shape, which
is true by EGLS’s description. For (ii), the splitting says each label in i(j) is strictly bigger
than dj−1. Now by (cs.3), each label in a(j) is strictly bigger than dj−1 as well. By EGLS’s
definition, the set of labels appearing in Tj is the same as that of a(j); hence (ii) holds.
Lastly, row(Tj) is a reduced word for a(j). Then (iii) is clear.
Φ is a bijection: Since EGLS is a bijective correspondence, clearly Φ is an injection. Con-
sider the weight function on Compatible(w) that assigns (a, i) weight xi and assigns
[(T1, U1), . . . , (Tk, Uk)] the weight xU1 · · ·xUk , where xUi is the usual monomial associated
to the tableau Ui. Then clearly Φ is a weight-preserving map (since EGLS is similarly
weight-preserving). Hence the surjectivity of Φ holds by (5) and Theorem 2.1. �

See [18, Section 5] for a proof of Theorem 2.1 which is close to the study of the split EGLS
correspondence (the argument constructs certain crystal operators).

2.4. The tableau T [α]. Recall w[α] ∈ S∞ satisfies code(w[α]) = α. Let ≺ be the pure
reverse lexicographic total ordering on monomials. The Schubert polynomial Sw[α] has
leading term xα (with respect to ≺). The same is true of κα (see [21, Corollary 7]) so

(9) Sw[α] = κα + linear combination of other Key polynomials.

Given an increasing tableau U , the nil left Key K0
−(U) is defined by [16] (cf. [21, p.111–

114]). Let sort(α) be the partition obtained by rearranging α into weakly decreasing
order. Also let content(T ) the usual content vector of a semistandard tableau T . This is a
result of A. Lascoux-M.-P. Schützenberger (cf. [21, Theorem 4]):

Theorem 2.3.
Sw(X) =

∑
κcontent(K0

−(U))

where the sum is over all increasing tableaux U of shape sort(α) with row(U) = w.

Thus, by (9) combined with Theorem 2.3 there exists a unique increasing tableau U [α]
of shape sort(α) with row(U [α]) = w[α] and such that α = content(K0

−(U [α])).
Let Fw = limk→∞S1k×w be the stable Schubert polynomial associated to w. This is a

symmetric polynomial in infinitely many variables. So therefore one has an expansion

(10) Fw =
∑
λ

aw,λsλ,

where the aw,λ ∈ Z≥0 are counted by increasing tableaux A of shape λ with row(A) = w.
We mention that (6) is derived from (10) in [4]; thereby, (10) may be seen as a specialization
of (6).

In [24, Theorem 4.1], it is shown aw,µ(w)′ = 1 for a certain explicitly described “maximal”
µ′(w). Moreover a simple description of the witnessing tableau A[α] is given. Straight-
forwardly, µ′(w[α]) = sort(α). Then T [α] is precisely the witnessing tableau A[α] for
aw[α],λ(w[α]) (after accounting for the fact that [24]’s conventions use Fw[α] for what we call
Fw[α]−1). We leave the details to the reader.

Finally since the expansion of Theorem 2.3 refines (10); see, e.g., [21], we have:

(11) T [α] = A[α] = U [α].
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So, T [α] is an increasing tableau of shape sort[α] with the properties that row(T [α]) = w[α]
and content(K−(T [α])) = α.

2.5. Conclusion of the proof of Theorem 1.1: From the definition of Rothe(w[α]):

Lemma 2.4. The descents of w[α] are contained in the set of descents d1 < d2 < . . . < dk of α.

By Lemma 2.4 combined with Theorem 2.1 we obtain:

(12) Sw[α](X) =
∑
(a,i)

xi =
∑

λ1,...,λk

c
w[α]

λ1,...,λk
sλ1(X1) · · · sλk(Xk).

We recall the following formula [21, Theorem 5]:

Theorem 2.5. Fix an increasing tableau T with content(K0
−(T )) = α. Then

κα =
∑
(a,i)

xi

where the sum is over compatible sequences (a, i) satisfying (cs.1), (cs.2), (cs.3) and EGLS(a) = T .

In view of (11) and the properties about T [α] stated immediately after said equation,
we may set T = T [α] in Theorem 2.5 to obtain a monomial expansion formula for κα in
terms of compatible pairs. Thus, our theorem statement is that κα is precisely equal to a
prescribed subset of the summands of (12).

Thus to complete the proof, restrict Φ to those (a, i) ∈ Compatible(w[α]) such that
EGLS(a) = T [α]. Consider Φ(a, i) = [(T1, U1), . . . , (Tk, Uk)]. Since a(i) ∼ row(Ti), by (4)
we see

(13) row(T1) · · · row(Tk) ∼ a(1) · · · a(k) = a.

However, since we have assumed EGLS(a) = T [α], therefore:

(14) EGLS(row(T1) · · · row(Tk)) = T [α],

The other two requirements on (T1, . . . , Tk) hold since Φ is well-defined (Proposition 2.2).
The desired conditions on (U1 . . . , Uk) follow from Φ’s well-definedness and Lemma 2.4.

Conversely, suppose [(T1, U1), . . . , (Tk, Uk)] has (T1, . . . , Tk) satisfying Theorem 1.1’s con-
ditions. Since Φ is a bijection (Proposition 2.2), Φ−1([(T1, U1), . . . , (Tk, Uk)]) = (a, i) ∈
Compatible(w[α]). Also, by (13), a ∼ row(T1) · · · row(Tk). Now, we assumed (14) holds.
Hence, EGLS(a) = T [α] as desired. �

3. ADDITIONAL REMARKS

3.1. Comments on Theorem 1.1. Since κα specialize non-symmetric Macdonald polyno-
mials (see, e.g., [8, Section 5.3]), can one extend Theorem 1.1 in that direction?

Theorem 1.1 implies that the Key module of [21, Section 5] should have an action of
GL(d1)×GL(d2 − d1)× · · · ×GL(dk − dk−1) such that the character is κα.

V. Reiner suggests a variation of Theorem 1.1 using the plactic theory. The derivation
should be similar, using formulas from [22]. However we are missing the analogue of
[4, Corollary 4]; cf. [9, Sections 7, 8]. Theorem 1.1 naturally generalizes to Grothendieck
polynomials, using [3, 2]; details may appear elsewhere.
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3.2. Jα’s form a (finite) basis of Pol. Clearly, Jα(X) = xα +
∑

β≺α cβx
β . One decomposes

f ∈ Pol into a possibly infinite sum of Jα’s:

(15) f =
∑
α

gαJα

That is, find the ≺ largest monomial xθ0 appearing in f (0) := f (say with coefficient cθ0)
and let f (1) := f − cθ0 · Jθt . Thus f (1) only contains monomials strictly smaller in the ≺
ordering. Now repeat, defining f (t+1) := f (t) − cθtJθt where xθt is the ≺-largest monomial
appearing in f (t) etc. Since Jα is not homogeneous, each step t potentially introduces
≺-smaller monomials but of higher degree. However, we claim:

Proposition 3.1. The expansion (15) is finite.

Proof. By theK-Kohnert rule, each β that appears in Jα is contained in the smallest rectan-
gle R that contains α. So the above procedure only involves the finitely many diagrams
contained in R for one of the finitely many initial α ∈ Z∞≥0 such that xα is in f . �

3.3. More on the interplay of Grothendieck and the Ω polynomials. M. Shimozono has
suggested that the expansion of Gw into Ωα should alternate in sign, by degree. An explicit
rule exhibiting this has been conjectured by V. Reiner and the second author.
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