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1. INTRODUCTION

1.1. Overview. In 2005, physicist J. E. Hirsch [Hi05] proposed the h-index to measure the
quality of a researcher’s output. This metric is the largest integer n such that the person
has n papers with at least n citations each, and all other papers have weakly less than
n citations. Although the original focus of loc. cit. was on physicists, the h-index is now
widely popular. For example, Google Scholar and the Web of Science highlight the h-index,
among other metrics such as total citation count, in their profile summaries.

An enticing point made in loc. cit. is that the h-index is an easy and useful supplement
to a citation count (Ncitations), since the latter metric may be skewed by a small number
of highly cited papers or textbooks. In Hirsch’s words:

“I argue that two individuals with similar hs are comparable in terms of
their overall scientific impact, even if their total number of papers or their
total number of citations is very different. Conversely, comparing two indi-
viduals (of the same scientific age) with a similar number of total papers or
of total citation count and very different h values, the one with the higher h
is likely to be the more accomplished scientist.”

It seems to us that users might tend to eyeball differences of hs and citation counts
among individuals during their assessments. Instead, one desires a quantitative baseline
for what “comparable”, “very different” and “similar” actually mean. Now, while this
would appear to be a matter for statisticians, we show how textbook combinatorics sheds
some light on the relationship between the h-index and Ncitations. We present a simple
model that raises specific concerns about potential misuses of the h-index.

To begin, think of the list of a researcher’s citations per paper in decreasing order λ =
(λ1 ≥ λ2 ≥ · · · ≥ λNpapers

) as a partition of size Ncitations. Graphically, λ is identified with
its Young diagram. For example, λ = (5, 3, 1, 0)↔ • •• • .

A combinatorialist will recognize that the h-index of λ is the side-length of the Durfee
square (marked using •’s above): this is the largest h× h square that fits in λ. This simple
observation is nothing new, and appears in both the bibliometric and combinatorial litera-
ture, see, e.g., [AnHaKi09, FlSe09]. In particular, since the Young diagram of sizeNcitations

with maximum h-index is roughly a square, we see graphically that 0 ≤ h ≤ b
√
Ncitationsc.

Next, consider the following question:

Given Ncitations, what is the estimated range of h?

Date: February 17, 2014.

1



Taking only Ncitations as input hardly seems like sufficient information to obtain a mean-
ingful answer. It is exactly for this reason that we call the question a combinatorial Fermi
problem, by analogy with usual Fermi problems; see Section 2.

Since we assume no prior knowledge, consider each citation profile in an unbiased
manner. That is, each partition of Ncitations is chosen with equal probability. In fact, there
is a beautiful theory concerning the asymptotics of these uniform random partitions. This
was largely developed by A. Vershik and his collaborators; see, e.g., the survey [Su10].

Actually, we are interested in “low” (practical) values ofNcitations where not all asymp-
totic results are exactly relevant. Instead, we use generating series and modern desktop
computation to calculate the probability that a random λ has Durfee square size h. More
specifically, we obtain Table 1 below using the Euler-Gauss identity for partitions:

(1)
∞∏
i=1

1

1− xi
= 1 +

∑
k≥1

xk
2∏k

j=1(1− xj)2
.

The proof of (1) via Durfee squares is regularly taught to undergraduate combinatorics
students; it is recapitulated in Section 3. The pedagogical aims of this note are elaborated
upon in both Sections 2 and 3.

Ncitations 50 100 200 300 400 500 750 1000 1250
Interval for h [2, 5] [3, 7] [5, 9] [7, 11] [8, 13] [9, 14] [11, 17] [13, 20] [15, 22]

1500 1750 2000 2500 3000 3500 4000 4500 5000 5500
[17, 24] [18, 26] [20, 28] [22, 31] [25, 34] [27, 36] [29, 39] [31, 41] [34, 43] [35, 45]

6000 6500 7000 7500 8000 9000 10000
[36, 47] [37, 49] [39, 51] [40, 52] [42, 54] [44, 57] [47, 60]

TABLE 1. Confidence intervals for h-index

The asymptotic result we use, due to E. R. Canfield-S. Corteel-C. D Savage [CaCoSa98],
gives the mode size of the Durfee square when Ncitations → ∞. Since their formula is in
line with our computations, even for low Ncitations, we reinterpret their work as the

rule of thumb for h-index: h =

√
6 log 2

π

√
Ncitations ≈ 0.54

√
Ncitations.

The focus of this paper is on mathematicians. For the vast majority of those tested,
the actual h-index computed using Mathscinet or Google scholar falls into the confidence
intervals. Moreover, we found that the rule of thumb is fairly accurate for pure mathe-
maticians. For example, Table 2 shows this for post-1998 Fields medalists.1

In [Hi05] it was indicated that the h-index has predictive value for winning the Nobel
prize. However, the relation of h index to the Fields medal is, in our opinion, unclear. A
number of the medalists’ h values below are shared (or exceeded) by non-contenders of

1Citations pre-2000 in Mathscinet are not complete. Google scholar and Thompson Reuters’ Web of Sci-
ence also have sources of error. We decided that Mathscinet was our most complete option for analyzing
mathematicians. For relatively recent Fields medalists, the effect of lost citations is reduced.
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similar academic age, or with those who have the similar citation counts. Perhaps, this is
reflects a cultural difference between the mathematics and the scientific communities.

In Section 4, we analyze mathematicians in the National Academy of Sciences, where
we show the correlation between the rule of thumb and actual h-indices isR = 0.94. After
removing book citations, R = 0.95. We also discuss Abel prize winners and associate
professors at three research universities.

Ultimately, the reader is encouraged to do checks of the estimates themselves.

Medalist Award year Ncitations h Rule of thumb est. Confidence interval
T. Gowers 1998 1012 15 17.2 [13, 20]

R. Borcherds 1998 1062 14 17.6 [14, 21]
C. McMullen 1998 1738 25 22.5 [18, 26]

M. Kontsevich 1998 2609 23 27.6 [22, 32]
L. Lafforgue 2002 133 5 6.2 [4, 8]

V. Voevodsky 2002 1382 20 20.0 [16, 23]
G. Perelman 2006 362 8 10.0 [7, 12]
W. Werner 2006 1130 19 18.2 [14, 21]

A. Okounkov 2006 1677 24 22.1 [18, 25]
T. Tao 2006 6730 40 44.3 [38, 51]

C. Ngô 2010 228 9 8.2 [5, 10]
E. Lindenstrauss 2010 490 12 12.0 [9, 14]

S. Smirnov 2010 521 12 12.3 [9, 15]
C. Villani 2010 2931 25 29.2 [24, 33]

TABLE 2. Fields medalists 1998− 2010

We discuss three implications/possible applications of our analysis.

1.2. Comparing h’s when Ncitations’s are very different. It is understood that h-index
usually grows with Ncitations. However, when are citation counts so different that com-
paring h’s is uninformative? For example, hTao = 40 (6, 730 citations) while hOkounkov = 24
(1, 677 citations). The model asserts the probability of hOkounkov ≥ 32 is less than 1 in 10
million. Note the Math genealogy project has fewer than 200, 000 mathematicians.

These orders of magnitude predict that no mathematician with 1, 677 citations has an
h-index of 32, even though technically it can be as high as 40. Similarly, one predicts
the rarity of pure mathematicians with these citations having “similar” h-indices (in the
pedestrian sense). This is relevant when comparing (sub)disciplines with vastly different
typical citation counts. We have a theoretical caution about “eyeballing”.

1.3. The rule of thumb and the highly cited. The model suggests the theoretical behav-
ior of the h-index for highly-cited scholars. The extent to which these predictions hold
true is informative. This is true not only for individuals, but for entire fields as well.

Actually, Hirsch defined a proportionality constant a by Ncitations = ah2 and remarked,
“I find empirically that a ranges between 3 and 5.” This asserts h is between

√
1/5 ≈ 0.45

and
√
1/3 ≈ 0.58 times

√
Ncitations.

One can begin to try to understand the similarity between Hirsch’s empirical upper
bound and the rule of thumb. A conjecture of E. R. Canfield (private communication, see
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Section 3) asserts concentration around the mode Durfee square. Thus, theoretically, one
expects the rule of thumb to be nearly correct for Ncitations large.

Alas, this is empirically not true, even for pure mathematicians. However, we observe
something related: 0.54

√
Ncitations is higher than the actual h for almost every very highly

cited (Ncitations > 10, 000) scholar in mathematics, physics, computer science and statis-
tics (among others) we considered. On the rare occasion this fails, the estimate is only
beat by a small percentage (< 5%). The drift in the other direction is often quite large
(50% or more is not unusual in certain areas of engineering or biology).

Near equality occurs among Abel prize winners. We also considered all prominent
physicists highlighted in [Hi05] (except Cohen and Anderson, due to name conflation in
Web of Science). The guess is always an upper bound (on average 14 − 20% too high).
Near equality is met by D. J. Scalapino (25, 881 citations; 1.00), C. Vafa (22, 902 citations;
0.99), J. N. Bahcall (27, 635 citations; 0.98); we have given the ratio true h

estimated h .
One reason for highly cited people to have lower than expected h-index is that they

tend to have highly cited textbooks. Also, famous academics often run into the “Matthew
effect” (e.g., gratuitous citations of their most well-known articles or books).

1.4. Anomalous h-indices. More generally, our estimates give a way to flag anomalous
h-indices of active researchers, i.e., those that are far outside the confidence interval, or,
e.g., those for which the rule of thumb is especially inaccurate.

To see what effect book citations has on our estimates, consider the combinatorialist
R. P. Stanley. Since Stanley has 6, 510 citations, we estimate his index as 43.6. However,
hStanley = 35, a 20% error. Now, 3, 237 of his citations come from textbooks. Subtracting
these, one estimates his h-index as 30.9 while his revised actual h-index is 32, only a 4%
error. This kind of phenomenon was not uncommon; see the appendix.

For another example, consider T. Tao’s Google scholar profile. Since he has 30, 053 cita-
tions, the rule of thumb predicts his h-index is 93.6. This is far from his actual h-index of
65. Now, his top five citations (joint with E. Candes on compressed sensing) are applied.
Removing the papers on this topic leaves 13, 942 citations. His new estimate is therefore
63.7 and his revised h-index is 61.

In many cases we have looked at, once the “skewing” feature of the scholar’s profile is
removed, the remainder of their profile agrees with the rule of thumb.

1.5. Conclusions and summary. Whether it be Fields medalists, Abel prize laureates,
job, promotion or grant candidates, clearly, the quality of a researcher cannot be fully
measured by numerics. However, in reality, the h-index is used, formally or informally,
for comparisons. This paper attempts to provide a theoretical and testable framework to
quantitatively understand the limits of such evaluations. For mathematicians, the accu-
racy of the rule of thumb suggests that the differences of h index between two mathemati-
cians is strongly influenced by their respective citation counts.

While discussion of celebrated mathematicians and their statistics makes for fun coffee
shop chatter, a serious way that h-index comes up in faculty meetings concerns relatively
junior mathematicians. Consider a scholar A with 100 citations and h index of 6 and a
scholar B who has 50 citations and an h-index of 4. Such numbers are not atypical of
math assistant professors going up for tenure. Our model predicts hA to be a little bigger
than hB. Can one really discern what portion of hA − hB is a signal of quality?
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The problem becomes larger when A and B are in different subject areas. Citations for
major works in applied areas tend to have many more citations than in mathematics. In
experimental fields, papers may have many coauthors. Since h-index does not account
for authorship order, this tends to affect our estimates for such subjects.

Pure mathematicians have comparatively fewer coauthors, papers and citations. It is
not uncommon for, e.g., solutions to longstanding open problems, to have relatively few
citations. Thus an explanatory model for pure mathematicians has basic reasons for being
divergent for some other fields. Yet, if this is the case, can the h-index really be used
universally? This gives us a theoretical reason to question whether one can make simple
comparisons across fields, even after a rescaling, as has been suggested in [IgPe07].

2. COMBINATORIAL FERMI PROBLEMS

2.1. Usual Fermi problems. Fermi problems are so-named after E. Fermi, whose ability
to obtain good approximate quantitative answers with little data available is legendary.
As an illustration, we use the following example [Co]:

How many McDonalds operate in the United States?

There are 10 McDonalds in Champaign county, which has a population of about 200, 000.
Assume the number of McDonalds scales with population. Since the population of the United
States is 300 million, a “back-of-the-envelope” calculation estimates the number of Mc-
Donalds at 15, 000. The actual answer, as of 2012, is 14, 157.

Using a simplified assumption like the italicized one above is a feature of a Fermi prob-
lem. Clearly, the uniform assumption made is not really correct. However, the focus is on
good, fast approximations when more careful answers are either too time consuming to
determine, or maybe even impossible to carry out. The approximation can then be used
to guide further work to determine more accurate/better justified answers.

Now, although the estimate is rather close to the actual number, when the estimate is
not good, the result is even more interesting, as it helps identify a truly faulty assumption.
For instance, analogous analysis predicts that the number of Whole Foods in the United
States is 0. Apparently, the presence of that company does not scale by population.

Fermi problems/back-of-the-envelope calculations are a standard part of a physics or
engineering education. They are of theoretical value in the construction mathematical
models, and of “real world” value in professions such as management consulting. How-
ever, perhaps because the concept is intrinsically non-rigorous, it is not typically part of
a (pure) mathematics curriculum. Specifically, this is true for enumerative combinatorics,
even though the subject’s purpose is to count the number of certain objects – which in the
author’s experience, many students hope has non-theoretical applicability.

2.2. A combinatorial analogue. By analogy we define a combinatorial Fermi problem:

Fix ε > 0. Let S be a finite set of combinatorial objects and ω : S → Z≥0
be a statistic on S. Then we estimate the value of ω on any element to be
the confidence interval [a, b] where the uniform probability of picking an
element of S outside of this range has probability < ε.

By definition, the (ordinary) generating series for the combinatorial problem (S, ω) is
defined by G(S,ω)(x) =

∑
s∈S x

ω(s). For any k, #{s ∈ S : ω(s) = k} = [xk]G(S,ω)(x), i.e., the
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coefficient of xk in G(S,ω)(x). Usually, textbook work involves extracting the coefficient
using formulae valid in the ring of formal power series. However, what is often not
emphasized in class is that this coefficient, and #S itself can be rapidly extracted using a
computer algebra system, allowing for a quick determination of the range [a, b]. Since the
computer does the work, this is our analogue of a “back-of-the envelope” calculation.

For “reasonable” values of ε (such as ε = 2%), often the range [a, b] is rather tight. In
those cases, there may be a theorem of asymptotic concentration near a “typical” object.
However, even if such theorems are known, this does not solve the finite problem.

The use of the uniform distribution is a quick way to exactly obtain estimates that can
be compared with empirical data. Ultimately, it invites the user to consider other proba-
bility distributions and more sophisticated statistical analysis (just as one should with the
McDonald’s example), using e.g., Markov Chain Monte Carlo techniques.

We mention another combinatorial Fermi problem we have considered elsewhere: the
count of the number of indigeneous language families in the Americas [Yo13]. That is a
situation where essentially there is no way to know with great certainty the true answer.

3. THE EULER-GAUSS IDENTITY AND ITS APPLICATION TO THE h-INDICES

We apply the perspective of Section 2 to the h-index question, where S = Par(n) and
ω : S → Z≥0 is the size of a partition’s Durfee square. If Par is the set of all partitions
and σ : Par → Z≥0 returns the size of a partition, then the generating series for (Par, σ) is
P (x) =

∏∞
i=1

1
1−xi . That is, #Par(n) = [xN ]P (x). A sample textbook reference is [Br10].

Recall the Euler-Gauss identity (1) from the introduction. The well-known combinato-
rial proof is that every Young diagram λ bijectively decomposes into a triple (Dλ, Rλ, Bλ)
where Dλ is a k × k square, Rλ is a Young diagram with at most k rows and Bλ is a parti-
tion with at most k columns. That is, Dλ is the Durfee square, Rλ be the shape to the right
of the square and Bλ to be the shape below it. For example:

λ = • •• • 7→
(

, ,

)
= (Dλ, Rλ, Bλ).

The generating series for partitions with at most k columns is directly
∏k

j=1
1

1−xj . Since
conjugation (the “transpose”) of shape with at most k rows returns a shape with at most k
columns, it follows that the generating series for shapes of the first kind is also

∏k
j=1

1
1−xj .

From this argument, we see that the generating series for Young diagrams with Durfee
square of size k is xk2

∏k
j=1(1− xj)−2. We compute for fixed h,Ncitations:

Prob(λ : |λ| = Ncitations,Durfee square of size k) =
[xNcitations ]xk

2∏k
j=1(1− xj)−2

Par(Ncitations)
.

Often textbook analysis ends at the derivation of (1). In a classroom, using a computer
to Taylor expand

∑b
k=a x

k2
∏k

j=1(1−xj)−2, and comparing the coefficients with the known
partition numbers allows the instructor to “physically” demonstrate the identity to the
student. Varying a and b shows what range of Durfee square sizes are, e.g., 98% likely to
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occur for partitions of that size. Interpreted in terms of our h-index problem, these same
computations are what gives us Table 1.2

As we state in Section 1, the work of [CaCoSa98] shows the mode Durfree square size
is ≈ 0.54

√
Ncitations. E. R. Canfield’s concentration conjecture states that for each ε > 0,

(2) lim
Ncitations→∞

# partitions with (1− ε)µ < h < (1 + ε)µ

#Par(Ncitations)
→ 1,

where µ =
√
6 log 2
π

√
Ncitations. This is consistent with Table 1. Further discussion may ap-

pear elsewhere. Also, one would like to examine other distributions on Young diagrams,
such as the Plancherel measure, which assigns the shape λ the probability (fλ)2/|λ|! where
fλ is the number of standard Young tableaux of shape λ.

4. FURTHER COMPARISONS WITH EMPIRICAL DATA

4.1. The National Academy of Science. We compared our rule of thumb against all 120
mathematicians of the National Academy of Sciences (see the appendix). The correlation
coefficient is R = 0.93. After removing books (as identified in Mathscinet), R = 0.95. A
serious concern is that many pre-2000 citations are not tabulated in Mathscinet. Neverthe-
less, in our opinion, the results are still informative. See the comments in Section 4.4.

FIGURE 1. Rule of thumb (x-axis) versus acutal h’s (y-axis) for Mathematics
members of the National Academy of Sciences

2Actually, our computation of Par(Ncitations) using generating series became not so easy on a desktop
machine when Ncitations is a few thousand. Instead, one could use the Hardy-Ramanujun approximation

Par(Ncitations) ∼ 1
4Ncitations

√
3
eπ

√
2Ncitations

3 . Even more precisely, one can use Wolfram Alpha, which gives the
partition numbers for up to a million, which is well beyond our needs.
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FIGURE 2. Rule of thumb (x-axis) versus actual h’s (y-axis) for Mathematics
members of the National Academy of Sciences (with books removed)

4.2. Abel prize winners. Perhaps a closer analogy to the Nobel prize than the Fields
medal is the Abel prize, since the latter does not have an age-limit. The fit with the
estimated intervals remains decent; the concern about pre-2000 citations remains.

Laureate Award year Ncitations h rule of thumb est. Estimated range
J. P. Serre 2003 10119 53 54.3 [47, 60]
I. Singer 2004 2982 28 29.5 [24, 34]

M. Atiyah 2004 6564 40 43.7 [37, 49]
P. Lax 2005 4601 30 36.6 [31, 42]

L. Carleson 2006 1980 18 24.0 [19, 28]
S. R. S. Varadhan 2007 2894 28 29.0 [24, 33]

J. Thompson 2008 789 14 15.2 [11, 18]
J. Tits 2008 3463 28 31.8 [27, 36]

M. Gromov 2009 7671 41 47.3 [40, 54]
J. Tate 2010 2979 30 29.5 [24, 34]

J. Milnor 2011 7856 48 47.9 [41, 54]
E. Szemerédi 2012 2536 26 27.2 [22, 31]

P. Deligne 2013 6567 36 43.8 [37, 50]
TABLE 3. Abel prize recipients

4.3. Associate Professors. Finally, in Table 4 we considered all mathematics associate
professors at three research universities. Of the 32 professors, all but five have their h-
index in the estimated range, and all are at most one unit outside this range.
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Ncitations h rule of thumb est. estimated range
Department A

A1 19 3 2.4 [1, 3]
A2 80 6 4.8 [3, 6]
A3 113 6 5.7 [4, 7]
A4 130 4 6.1 [4, 8]
A5 202 6 7.7 [5, 10]
A6 511 11 12.2 [9, 15]

Department B
B1 30 3 3.0 [1, 4]
B2 35 4 3.2 [2, 4]
B3 56 4 4.0 [2, 5]
B4 56 5 4.0 [2, 5]
B5 63 5 4.3 [3, 5]
B6 63 6 4.3 [3, 5]
B7 78 3 4.8 [3, 6]
B8 84 5 4.9 [3, 6]
B9 88 7 5.1 [3, 6]

B10 122 8 6.0 [4, 7]
B11 126 7 6.1 [4, 7]
B12 133 6 6.2 [4, 8]
B13 133 7 6.2 [4, 8]
B14 150 8 6.6 [4, 8]
B15 163 7 6.9 [5, 8]
B16 228 10 8.1 [5, 10]

Department C
C1 10 2 1.7 [1, 2]
C2 11 2 1.8 [1, 2]
C3 25 3 2.7 [1, 3]
C4 54 4 4.0 [2, 5]
C5 64 5 4.3 [3, 5]
C6 64 5 4.3 [3, 5]
C7 67 6 4.4 [3, 5]
C8 104 6 5.5 [4, 7]
C9 144 8 6.5 [4, 8]

C10 269 5 8.9 [6, 11]
TABLE 4. Associate professors at three research universities

4.4. Further study. It seems to us that the simple model presented describes one force
governing h-index. However, other forces/sources of noise are at play, depending on
the field or even the fame of the scholar. Future work seeks to better understand this
quantitatively, as one works towards more precise models.

The loss of pre-2000 citations in Mathscinet is significant to how we interpret the results
for the National Academy members/Abel prize winners. For example, the rough agree-
ment with the rule of thumb might only reflect an “equilibrium state” that arises years
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after major results have been published. This concern is partly are allayed by the similar
agreement for recent Fields medalists (Table 2). However, as Mathscinet reaches further
back in tabulating citations, one would try to quantify these effects. In the meantime, use
of Mathscinet has practical justification since in promotion and grant decision cases, recent
productivity is important. So for these purposes, post-2000 data is mostly sufficient.

As a further cross-check, we used the rule of thumb for a broad range of fields using
Google Scholar. For scholars with a moderate number of citations, the agreement is often
similarly good. Also the rule is an upper bound for the vast majority of highly cited
scholars (but as we have said earlier, much less accurate in some fields). However, these
checks have an obvious bias as they only consider people who have set up a profile, so
we do not formally present these results here.

We propose using the rule of thumb and the confidence intervals as a basis for a sys-
tematic study. We suggest that the rule of thumb reflects an “ideal scholar”. (This termi-
nology is an allusion to “ideal gas” in statistical mechanics. Indeed, a more conventional
use of random partitions concerns the study of Boltzmann statistics on a one-dimensional
lattice fermion gas.) Divergence from this ideal is a result of “anomalies”. For a choice of
field, can one statistically distinguish, on quantifiable grounds, scholars who are close to
the rule of thumb (in the sense of confidence intervals) from those who are far from it?
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TABLE 5. (Appendix) Current National Academy of Sciences Members (Mathematics)

Member Ncitations Rule of thumb est. h non-books only revised est. revised h

G. Andrews 4866 37.7 28 2579 27.4 24
M. Artin 2326 26 26 2097 24.7 24

M. Aschbacher 1386 20 17 911 16.3 13
R. Askey 2480 26.9 17 1235 19.0 16

M. Atiyah 6564 43.7 40 5390 39.6 38
H. Bass 2472 26.8 22 1869 23.3 22

E. Berlekamp 764 14.9 12 363 10.3 10
J. Bernstein 2597 27.5 22 2484 26.9 21

S. Bloch 1497 20.9 20 1363 19.9 18
E. Bombieri 1746 22.6 23 1608 21.7 22
J. Bourgain 6919 44.9 42 6590 43.8 40
H. Brezis 11468 57.8 50 8386 49.5 48

F. Browder 2815 28.7 22 2807 28.6 22
W. Browder 646 13.7 13 547 12.6 12

R. Bryant 1489 20.8 21 1228 18.9 20
L. Caffarelli 6745 44.3 42 6280 42.8 41

E. Calabi 1224 18.9 18 1224 18.9 18
L. Carleson 1980 24 18 1484 20.8 17

S-Y. Alice Chang 1828 23.1 24 1806 22.9 24
J. Cheeger 3387 31.4 30 3348 31.2 30

D. Christodoulou 783 15.1 17 594 13.2 16
A. Connes 6475 43.5 43 5318 39.4 43

I. Daubechies 4674 36.9 28 3002 29.6 27
P. Deift 3004 29.6 26 2545 27.2 26

P. Deligne 6567 43.8 36 5592 40.4 33
P. Diaconis 3233 30.7 30 2970 29.4 30

S. Donaldson 2712 28.1 29 2277 25.8 29
E. Dynkin 1583 21.5 20 1090 17.8 16

Y. Eliashberg 1628 21.8 20 1460 20.6 18
L. Faddeev 1820 23 20 1285 19.4 18

C. Fefferman 3828 33.4 29 3815 33.4 29
M. Freedman 1207 18.8 16 990 17 16

W. Fulton 5890 41.4 27 1424 20.4 20
H. Furstenberg 2064 24.5 21 1650 21.9 21

D. Gabai 1314 19.6 17 1314 19.6 17
J. Glimm 1826 23.1 18 1419 20.3 18

R. Graham 3881 33.6 25 2280 25.8 24
U. Grenander 895 16.1 13 227 8.1 6

P. Griffiths 4581 36.5 26 1692 22.2 22
M. Gromov 7671 47.3 41 6200 42.5 38

B. Gross 1692 22.2 25 1635 21.8 24
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Member Ncitations Rule of thumb est. h non-books only revised est. revised h

V. Guillemin 3710 32.9 27 2035 24.4 22
R. Hamilton 2490 26.9 20 2392 26.4 19
M. Hochster 1727 22.4 22 1657 22 21

H. Hofer 2140 25 25 1928 23.7 24
MJ. Hopkins 714 14.4 17 714 14.4 17

R. Howe 1680 22.1 22 1579 21.5 22
H. Iwaniec 2822 28.7 26 1825 23.1 24

A. Jaffe 794 15.2 9 277 9 8
P. Jones 1112 18 19 1112 18 19
V. Jones 2025 24.3 18 1669 22.1 17

R. Kadison 1922 23.7 20 1042 17.4 18
R. Kalman 558 12.8 10 428 11.2 10

N. Katz 2370 26.3 23 1582 21.5 20
D. Kazhdan 2332 26.1 27 2332 26.1 27

R. Kirby 963 16.8 15 678 14.1 14
S. Klainerman 2324 26 28 2144 25.0 27

J. Kohn 1231 18.9 19 1068 17.6 18
J. Kollár 3100 30.1 26 1947 23.8 22

B. Kostant 2509 27 25 2509 27 25
R. Langlands 1466 20.6 19 773 15.0 15
H.B. Lawson 2576 27.4 22 1846 23.2 21

P. Lax 4601 36.6 30 3560 32.2 27
E. Lieb 5147 38.7 33 4349 35.6 32

T. Liggett 1975 24 17 984 16.9 16
L. Lovasz 5638 40.5 34 4259 35.2 30
G. Lusztig 5786 41.1 40 4945 38.0 38

R. MacPherson 2031 24.3 22 1676 22.1 21
G. Margulis 2267 25.7 26 1788 22.8 25

J. Mather 1399 20.2 21 1399 20.2 21
B. Mazur 2842 28.8 26 2440 26.7 24

D. McDuff 2289 25.8 24 1417 20.3 23
H. McKean 2480 26.9 24 1701 22.3 21

C. McMullen 1738 22.5 25 1368 20.0 24
J. Milnor 7856 47.9 48 4559 36.5 40

C. Morawetz 789 15.1 16 764 14.9 15
J. Morgan 1985 24.1 25 1484 20.8 21

G. Mostow 1180 18.5 19 896 16.2 17
J. Nash 1337 19 10 1337 19 10

E. Nelson 1010 17.2 15 753 14.8 11
L. Nirenberg 9145 51.6 45 8781 50.6 43
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Member Ncitations Rule of thumb est. h non-books only revised est. revised h

S. Novikov 2368 26.3 27 1677 22.1 21
A. Okounkov 1677 22.1 24 1677 22.1 24
D. Ornstein 1100 17.9 19 1022 17.3 18

J. Palis 1570 21.4 19 895 16.2 18
P. Rabinowitz 6633 44 29 5316 39.4 29

M. Ratner 506 12.1 13 506 12.1 13
K. Ribet 1022 17.3 18 1021 17.3 18
P. Sarnak 3114 30.1 32 2780 28.5 29
M. Sato 738 14.7 12 738 14.7 12

R. Schoen 3945 33.9 34 3493 31.9 34
J. Serre 10119 54.3 53 4481 36.1 36

C. Seshadri 984 16.9 15 831 15.6 14
Y. Sinai 3357 31.3 31 2547 27.3 28
I. Singer 2982 29.5 28 2951 29.3 28

Y. Siu 1494 20.9 22 1350 19.8 21
S. Smale 4581 36.5 39 3942 33.9 36

R. Solovay 781 15.1 14 781 15.1 14
J. Spencer 758 14.9 15 1334 19.7 18
R. Stanley 6510 43.6 35 3148 30.3 32
H. Stark 678 14.1 13 653 13.8 13
C. Stein 763 14.9 12 658 13.9 11
E. Stein 14049 64 49 5788 41.1 37

R. Steinberg 1850 23.2 19 1068 17.6 17
S. Sternberg 2438 26.7 25 1476 20.8 18
D. Stroock 3299 31.0 27 2028 24.3 24
D. Sullivan 3307 31.1 32 3248 30.8 31

R. Swan 1109 18 20 998 17.1 19
E. Szemerédi 2536 27.2 26 2536 27.2 26

T. Tao 6730 44.3 40 6214 42.3 39
J. Tate 2979 29.5 30 2612 27.6 28

C. Taubes 1866 23.2 24 1626 21.8 23
J. Thompson 789 15.2 14 789 15.2 14

J. Tits 3463 31.8 28 2958 29.4 26
K. Uhlenbeck 1852 23.2 21 1756 22.6 20
S. Varadhan 2894 29 28 2153 25.1 26

D. Voiculescu 2952 29.3 29 2387 26.4 26
A. Wiles 1387 20 14 1387 20 14
S-T. Yau 7536 46.9 44 7066 45.4 43

E. Zelmanov 1055 17.5 16 1020 17.2 16
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