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Abstract. In certain finite posets, the expected down-degree of their elements is the same whether com-

puted with respect to either the uniform distribution or the distribution weighting an element by the number

of maximal chains passing through it. We show that this coincidence of expectations holds for Cartesian
products of chains, connected minuscule posets, weak Bruhat orders on finite Coxeter groups, certain lower

intervals in Young’s lattice, and certain lower intervals in the weak Bruhat order below dominant permu-
tations. Our tools involve formulas for counting nearly reduced factorizations in 0-Hecke algebras; that is,

factorizations that are one letter longer than the Coxeter group length.

1. Introduction

The edge density of a finite poset P is the ratio of the number of its covering relations q l p to its
cardinality #P . One can also interpret this ratio as the expectation E(X) of a random variable X(p)
counting the elements covered by p ∈ P . That is, the random variable X(p) computes the down-degree of p
in the Hasse diagram of P , with respect to the uniform distribution.

If, instead, one assigns to each p ∈ P a probability proportional to the number of maximal chains through
p in P , then one can define a random variable Y (p) whose value is again the down-degree of p in the Hasse
diagram, but now weighted by that probability.

Given the different distributions in play, one would generally not expect the expectations for X(p) and
Y (p) to be equal. However, our observation is that, in a variety of interesting settings, one does indeed find
equality.

Definition. A finite poset P has coincidental down-degree expectations (CDE) if E(X) = E(Y ).

We may also refer to P as being CDE. This terminology will be made more precise in Definition 2.1. To
motivate our study, consider the following examples of CDE posets.

• Disjoint unions of chains are CDE because the two probability distributions are the same in this
setting.

• Cartesian products of chains are CDE because Proposition 2.13 will show that CDE is preserved
under Cartesian products of graded posets.

• Weak Bruhat order on a finite Coxeter group is CDE. In fact, any weak order on the chambers of
a (central, essential) simplicial hyperplane arrangement in Rr (or, more generally, the topes of an
oriented matroid of rank r) is CDE, as will be shown in Corollary 2.22.

• Tamari lattices on polygon triangulations are CDE, as will be shown in Corollary 2.23.
• Connected minuscule posets are CDE, as will be shown in Theorem 2.10. Also the distributive

lattices J(P ) associated to arbitrary minuscule posets P are CDE, as will be shown Theorem 2.11.
• Our main result, Theorem 1.1, exhibits a rich class of lower intervals in Young’s lattice and in weak

Bruhat orders on permutations, all of which are CDE. (In fact, this paper grew from an attempt to
understand Corollary 1.3 of Theorem 1.1 in two different ways.)

Before stating our main result, we recall a few definitions. Young’s lattice is the partial order on integer
partitions λ according to containment of their Ferrers diagrams µ ⊂ λ. The (right) weak Bruhat order on
permutations in the symmetric group Sn is the transitive closure of the relation u l w if w = us for some
adjacent transposition s = σi = (i, i + 1) with u(i) < u(i + 1). A permutation w = w(1) · · ·w(n) ∈ Sn is
vexillary if it is 2143-avoiding; that is, if there are no quadruples i1 < i2 < i3 < i4 with w(i2) < w(i1) <
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w(i4) < w(i3). Such a vexillary permutation has shape λ if λ is the weakly decreasing rearrangement of
its Lehmer code c(w) := (c1(w), c2(w), . . .), where ci(w) := #{j > i : w(i) ≥ w(j)}. Within the class of
vexillary permutations we will consider three subclasses.

• A permutation w is dominant if it is 132-avoiding; that is, if there are no triples i1 < i2 < i3 with
w(i1) < w(i3) < w(i2). If we regard the symmetric group Sn as a subset of Sn+1 via the embedding
w 7→ w′, where w′(i) = w(i) for 1 ≤ i ≤ n and w(n + 1) = n + 1, then there is a unique dominant
permutation in

⋃
n≥0 Sn of shape λ, characterized by c(w) = λ (without rearrangement).

• A permutation w is Grassmannian if it has at most one descent ; that is, if w(i) > w(i + 1) for at
most one value of i.

• A permutation w is inverse Grassmannian if w−1 is Grassmannian; that is, if w−1(i) > w−1(i+ 1)
for at most one value of i.

We will also want to consider a family of partitions generalizing both

• a× b rectangles ba = (b, b, . . . , b), and
• staircases δd = (d− 1, d− 2, . . . , 2, 1).

As such, we study the rectangular staircase partitions δd(b
a), whose Ferrers diagrams are staircases δd in

which each square is replaced by an a× b block. One such partition appears in Figure 1.

Figure 1. The rectangular staircase partition δ4(42) = (12, 12, 8, 8, 4, 4). The dominant
permutation with Lehmer code c(w) = δ4(42) is w = 13 14 9 10 5 6 1 2 3 4 7 8 11 12 in S14.

Theorem 1.1. Let λ be a partition, and w a vexillary permutation of shape λ.

(a) The lower intervals [∅, λ] in Young’s lattice and [e, w] in weak Bruhat order have the same Y expec-
tations; that is,

E(Y[∅,λ]) = E(Y[e,w]).

(b) If w is either Grassmannian or inverse Grassmannian, then these intervals also have the same X
expectations; that is,

E(X[∅,λ]) = E(X[e,w]).

(c) If λ = δd(b
a) is a rectangular staircase and w is either

• dominant,
• Grassmannian, or
• inverse Grassmannian,

then the posets [∅, λ] and [e, w], and their duals [∅, λ]∗ and [e, w]∗ are all CDE. Moreover,

E(X) = E(Y ) =
(d− 1)ab

a+ b

in each case.

Note that one always has E(XP ) = E(XP∗) because the Hasse diagrams of P and P ∗ have the same edge
densities, but E(YP ) and E(YP∗) need not be equal. Indeed, as will be described in Example 2.17, there are
CDE posets P whose dual posets P ∗ are not CDE.

Conjecture 1.2. When λ = δd(b
a), the conclusion in Theorem 1.1(c) holds for all vexillary w of shape λ.

There is a close connection relating the instance of CDE given by Theorem 1.1(c) to recent work of Chan,
Mart́ın, Pflueger, and Teixidor i Bigas [CMPT15] and of Chan, Haddadan, Hopkins, and Moci [CHHM15].
The result [CMPT15, Corollary 2.15] (recapitulated as [CHHM15, Theorem 1.1]) calculates the expected
“jaggedness” of a lattice path in an a× b grid under a certain probability distribution on paths. This is the
central combinatorial fact used in [CMPT15] to reprove a formula of Eisenbud-Harris and of Pirola for the
genera of Brill-Noether curves. Theorem 1.2 of [CHHM15] is a generalization of this jaggedness theorem to
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lattice paths in a general connected skew shape with respect to any “toggle symmetric” distribution. As
is detailed further in Remark 2.6, Theorem 1.1(c) provides a different proof of [CMPT15, Corollary 2.15],
whereas [CHHM15, Theorem 1.2] may be used to give a different proof of the assertion on [∅, λ] and [∅, λ]∗

for λ = δd(b
a) in Theorem 1.1(c).

After covering the groundwork for CDE posets in Section 2, most of the paper is aimed toward proving
the assertions of Theorem 1.1. We build up general techniques to compute E(X) and E(Y ) for [∅, λ] in
Young’s lattice using Young tableaux and set-valued tableaux (Section 3), and for [e, w] in Coxeter groups
involving reduced words and 0-Hecke words (Section 4). Tableaux reenter the discussion when we specialize
to the symmetric group in Section 5, for reasons that we highlight now.

For a permutation w, maximal chains in the lower interval [e, w] of weak Bruhat order correspond to
reduced words for w. In particular, they describe factorizations w = σi1σi2 · · ·σi` into adjacent transpositions
σi having the minimum possible length `, called `(w). Stanley [St84] proved that the number of reduced words
for any vexillary permutation w of shape λ is fλ, the number of standard Young tableaux of shape λ, which
has a simple product expression known as the Frame-Robinson-Thrall hook-length formula [St99, Corollary
7.21.6]. More generally, one can consider factorizations Tw = Ti1Ti2 · · ·TiL in the 0-Hecke monoid for
permutations, with generators T1, . . . , Tn−1 satisfying the usual braid relations together with the quadratic
relation T 2

i = Ti. The 0-Hecke factorizations for w having the minimum length L = `(w) correspond to
reduced words as before. Using results from the theory of Schubert and Grothendieck polynomials (see
Section 5.1), one can generalize Stanley’s result to assert that the number of 0-Hecke words having length
L for a vexillary permutation w of shape λ is the number of standard set-valued tableaux of shape λ having
entries 1, 2, . . . , L, each appearing exactly once. Here a set-valued tableau has a subset of entries filling each
square, but entries still increase from left-to-right in a row, and from top-to-bottom in a column. When
L = `(w) + 1, we call the corresponding 0-Hecke words nearly reduced and the set-valued tableaux barely
set-valued. This terminology will be made precise in Definition 3.2.

One no longer has a hook-length-style product formula for counting set-valued tableaux of any shape λ.
However, we derive a general recurrence for counting these objects (Corollary 3.11), and use this to show that

for dominant w whose shape is a rectangular staircase δd(b
a), one has this rephrasing of E(Y[e,w]) = (d−1)ab

a+b .

Corollary 1.3. Let w be a dominant permutation of rectangular staircase shape λ = δd(b
a). Then the

number of barely set-valued tableaux of shape λ (equivalently, the number of nearly reduced words for w) is

(|λ|+ 1)
(d− 1)ab

a+ b
fλ.

Example 1.4. Taking d = 3 and a = b = 1, one has λ = δ3(11) = (2, 1) and w = 321, with two reduced
words: (σ1, σ2, σ1) and (σ2, σ1, σ2). Correspondingly, there are fλ = 2 standard Young tableaux of shape λ:

1 2

3
and 1 3

2
.

Meanwhile, there are eight 0-Hecke words of length 4 for w:

{(T1, T1, T2, T1), (T1, T2, T1, T1), (T1, T2, T1, T2), (T1, T2, T2, T1),

(T2, T1, T1, T2), (T2, T1, T2, T1), (T2, T1, T2, T2), (T2, T2, T1, T2)} .
These correspond to the eight barely set-valued tableaux of shape λ = (2, 1):

12 3

4
, 12 4

3
, 1 23

4
, 1 4

23
, 1 24

3
, 1 3

24
, 1 2

34
, and 1 34

2
.

This agrees with Corollary 1.3, which would have predicted this number to be

(|λ|+ 1)
(d− 1)ab

a+ b
fλ = (3 + 1)

(3− 1) · 1 · 1
1 + 1

· 2 = 8.

Section 6 contains a conjecture (Conjecture 6.3) which is inspired both by Corollary 1.3 and by a formula
of Fomin and Kirillov [FK97] (recapitulated here as Theorem 6.1). In fact, some support for our conjecture
is derived from an extension (Theorem 6.7) of this Fomin-Kirillov formula, which we prove in Section 7.

We wish to highlight here one byproduct of our analysis. The calculation of E(X[∅,λ]) for λ a rectangular
staircase (Proposition 3.16) uses the q = 1 specialization of an easy recurrence for the rank-generating
function R(λ, q) :=

∑
µ⊂λ q

|µ| of the interval [∅, λ] in Young’s lattice. This recurrence encompasses
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• the q-Pascal recurrence for q-binomials [St12, Equation (1.67)] when λ is a rectangle, and
• the recurrence for the Carlitz-Riordan q-Catalan polynomial which counts all Dyck paths by their

enclosed area [Ha08, Proposition 1.6.1] when λ is a staircase,

but we were unable to find it in the literature.

Proposition 1.5. For any partition λ,

R(λ, q) =
∑

x=(i,j)

qi(j−1) ·R(λ(x), q) ·R(λ(x), q),

where x runs over all outside corner cells of λ, lying in row i and column j, and where

λ(x) = (λi+1, λi+2, . . .) and λ(x) = (λ1 − j, λ2 − j, . . . , λi−1 − j)
are the subshapes of λ in the rows strictly below x and the columns strictly to the right of x, respectively.

Proof. For j > 1, each outside corner cell x = (i, j) has a cell y = (i, j − 1) inside λ and directly to its left.
For example, those neighboring cells are labeled {y1, y2, y3, y4} in the shape below.

y1

y2
y3

y4

The recurrence in the theorem comes from classifying a shape µ ⊂ λ according to which, if any, is the
northeasternmost cell yi contained in µ. For example, with λ as above, consider the cell y3 = (i, j−1) = (4, 5),
immediately to the left of the outside corner x3 = (i, j) = (4, 6). A partition µ ⊂ λ for which y3 ∈ µ but
y1, y2 6∈ µ must contain

• all of the i(j − 1) = 4 · 5 = 20 cells weakly northwest of y3, labeled • in the figure below, and
• none of the cells at the east ends of rows 1, 2, . . . , i− 1 = 4, labeled × in the figure below.

• • • • • ×
• • • • • ×
• • • • • ×
• • • • y3

Thus this µ is determined by its restrictions to the shapes in the unmarked cells of the figure above. The
southwesternmost of these constitute exactly λ(x3), and the northeasternmost form a copy of λ(x3). �

2. An overview of the CDE property

We now make precise the central theme of this paper, broached previously in Section 1.

Definition 2.1. Given a finite poset (P,≤), define two different probability spaces on the underlying set P .

• Let Ωunif
P be the uniform distribution, assigning Prob(p) = 1/#P for each p ∈ P .

• Let Ωchain
P assign Prob(p) to be proportional to the number of maximal chains c in P containing p.

That is, if M(P ) is the set of maximal chains in P , then

Prob(p) =
#{c ∈M(P ) : p ∈ c}

#{(c, q) ∈M(P )× P : q ∈ c}
=

#{c ∈M(P ) : p ∈ c}∑
c∈M(P )

#c
.
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Define random variables X := XP on Ωunif
P and Y := YP on Ωchain

P via the same formula:

X(p) = Y (p) = #{q ∈ P : q l p}.
A poset P has coincidental down-degree expectations (equivalently, P is CDE) if E(X) = E(Y ).

Whenever the poset P is graded, there is a natural way to interpolate between X and Y , pointed out to
the authors by S. Hopkins, and suggested by the work in [CHHM15].

Definition 2.2. Given a finite poset P and a positive integer m, define a probability space Ω(m)

P on the
underlying set P , with Prob(p) proportional to the number of m-element multichains p1 ≤ p2 ≤ · · · ≤ pm in
P that pass through p. On this probability space Ω(m)

P , define the random variable X(m) := X(m)

P as before,
where X(m)(p) = #{q ∈ P : q l p} records the down-degree of the element p.

Two extreme cases are of particular interest. When m = 1, we have (Ω(1)
P , X(1)) = (Ωunif

P , X). On the
other hand, if P is graded of rank r, that is, if all of its (inclusion-)maximal chains have exactly r + 1
elements, then it is not hard to see (cf. [CHHM15, Proposition 2.9]) that the pair (Ω(m)

P , X(m)) approaches
(Ωchain

P , Y ) in the limit as m→∞. Indeed, one can easily check (cf. [St12, §3.12]) that in this graded setting,
the number of m-element multichains passing through p is a polynomial in m of degree r, and that the
leading coefficient of this polynomial is (1/r!) ·#{c ∈M(P ) : p ∈ c}.

Definition 2.3. A finite poset P is multichain-CDE (written mCDE) if E(X(m)) is constant for m ≥ 1.

In particular, observe that if P is both graded and mCDE, then P is also CDE; indeed, in that case we
would have E(Y ) = limm→∞ E(X(m)) = E(X(1)) = E(X).

It will be helpful to know that for the distributive lattice J(P ) of order ideals I in P , the probability
distribution Ω(m)

J(P ) is toggle-symmetric, a concept defined in [CHHM15] and which we explain now.

Definition 2.4. [CHHM15, Definition 2.2] Let P be a finite poset, and let I denote an order ideal in P . For
a subset A ⊆ P , let max(A) (respectively, min(A)) denote the subset of P -maximal (respectively, P -minimal
elements) in A. A probability distribution on the finite distributive lattice J(P ) is toggle-symmetric if, for
every p ∈ P , the distribution assigns the same probability to the event that max(I) contains p as it assigns
to the event that min(P \ I) contains p.

Proposition 2.5. For finite posets P , the distribution Ω(m)

J(P ) on J(P ) is toggle-symmetric.

Proof. This is equivalent to showing that, for every p ∈ P , the following two sets have the same cardinality:

• the set of all pairs (I, c) in which I is an order ideal of P with p ∈ max(I), and c = (I1 ⊆ · · · ⊆ Im)
is an m-element multichain in J(P ) that passes through I, and

• the set of all pairs (I ′, c′) in which I ′ is an order ideal of P with p ∈ min(P \ I ′), and c = (I ′1 ⊆ · · · ⊆
I ′m) is an m-element multichain in J(P ) that passes through I ′.

We provide a bijection between these two sets. Given (I, c), define two consecutive intervals of indices

[i0, i0 + a] := {i : p ∈ max(Ii)}, and

[i0 + a+ 1, i0 + a+ b] := {i : p ∈ min(P \ Ii)},
so that a, b ≥ 0, and one must have I = Ii0+a0 for some a0 in the range 0 ≤ a0 ≤ a. To define the desired
bijection, map (I, c) 7→ (I ′, c′), where I ′j \ {p} = Ij \ {p} for all j, and I ′j = Ij if j /∈ [i0, i0 + a+ b], but

[i0, i0 + b] := {i : p ∈ max(I ′i)}, and

[i0 + b+ 1, i0 + a+ b] := {i : p ∈ min(P \ I ′i)},
and I ′ := I ′i0+(a−a0)+b. It is not hard to see that this map is a bijection. Its inverse is similarly defined. �

Remark 2.6. We can now further explain the connection between Theorem 1.1(c), and the two results
[CMPT15, Corollary 2.15] and [CHHM15, Theorem 1.2] that were alluded to in Section 1. The result
[CHHM15, Theorem 1.2] gives a vast generalization of [CMPT15, Corollary 2.15], which applies not only to
Youngs lattice intervals [∅, λ] with λ = ba a rectangle, but also applies to arbitrary intervals P = [µ, λ]. Such
intervals are always finite distributive lattices, and the authors consider several families of toggle-symmetric
probability distributions on them, including

• the uniform distribution Ωunif used in defining X, and
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• the distribution Ωchain used in defining Y .

They show that for any toggle-symmetric distribution on the Young’s lattice interval [µ, λ], if one defines
A and B to be the number of nonempty rows and columns occupied by the skew shape λ/µ, then the
down-degree random variable d : P → N has expectation

• given by a formula [CHHM15, Theorem 1.2] showing it to be approximately equal to AB
A+B , and

• exactly equal to AB
A+B when λ/µ satisfies a condition that they call balanced [CHHM15, Corollary 3.8].

We are lying slightly here, as the authors of [CHHM15] work not with down-degree, but with what they
call jaggedness, which is down-degree plus up-degree. For toggle-symmetric probability distributions, this is
equivalent to computing the expectation of down-degree: Definition 2.4 immediately implies that a toggle-
symmetric probability distribution assigns down-degree and up-degree the same expectation, which must
therefore be half the expectation that it assigns to the jaggedness statistic.

It is not hard to see that when µ = ∅ and λ = δd ◦ ba is a rectangular staircase, then λ/µ = λ is
balanced. Since, in this case, A = (d− 1)a and B = (d− 1)b, their result not only predicts our formula from
Theorem 1.1(c), but also shows that [∅, λ] is mCDE, with

E(X) = E(X(m)) = E(Y ) =
AB

A+B
= (d− 1)

ab

a+ b
.

Remark 2.7. After seeing this, one might wonder whether some of the weak order intervals that our The-
orem 1.1 asserts are CDE have the stronger mCDE property. However, this can fail even for the intervals
[e, w] where w is dominant of rectangular staircase shape λ = δd(b

a) when d ≥ 3. For example, if d = 3,
a = 1, and b = 2, so that λ = δ3(21) = (4, 2), and w = 53124 ∈ S5 is dominant of shape λ, then the weak
order interval [e, w] has

E(X(m)) =
2(14m3 + 111m2 + 199m+ 76)

21m3 + 168m2 + 299m+ 112

according to computations in SAGE.1 As predicted by Theorem 1.1, this rational function has the correct
value (d− 1)ab/(a+ b) = 4/3 at m = 1, and also in the limit as m→∞, but is not 4/3 for integers m ≥ 2.

2.1. Examples of CDE posets. We begin with some simple instances of CDE and mCDE posets.

Example 2.8. Finite disjoint unions of chains (that is, totally ordered sets) are CDE because each of
their elements lie on exactly one maximal chain, and thus (Ωunif

P , X) = (Ωchain
P , Y ). If all of the chains

have the same size, so that the poset is graded, then their union is also mCDE. This is because, similarly,
(Ωunif

P , X) = (Ω(m)

P , X(m)) = (Ωchain
P , Y ). On the other hand, one can check that when the chains have

different sizes, the poset is CDE but might not be mCDE.

The following poset family is similarly straightforward, and will be used in the proof of Theorem 2.10.

Example 2.9. Consider the following poset Pa,b,c,d, parametrized by four positive integers a, b, c, d.

w1

w2

wa

x1

x2

xb

y1

y2

yc

z1

z2

zd

1SAGE code for calculating E(X(m)) as a rational function in m is available from the first author.
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Fix m ≥ 1, and denote by f(p) the number of m-element multichains through p. One then computes

f(wi) = f(zj) is constant for all i = 1, 2, . . . , a, and j = 1, 2, . . . , d,

f(xi) is constant for i = 1, 2, . . . , b, and

f(yi) is constant for i = 1, 2, . . . , c.

Thus

E(X(m)) =
(a− 1)f(wi) + bf(xi) + cf(yi) + (d− 1)f(zi) + 2f(zi)

af(wi) + bf(xi) + cf(yi) + df(zi)

=
(a+ d)f(wi) + bf(xi) + cf(yi)

(a+ d)f(wi) + bf(xi) + cf(yi)

= 1,

and

E(Y ) =
2 · 0 + 2(a− 1) + 1 · b+ 1 · c+ 2 · 2 + 2(d− 1)

2(a+ d) + b+ c
= 1,

so every poset Pa,b,c,d is both mCDE and CDE, whether it is graded (that is, whether b = c) or not.

The list of CDE posets in Section 1 mentioned another important family: the minuscule posets, which
arise in the representation theory of Lie algebras, and have many amazing enumerative properties (see, for
example, [Gr13, Chapter 11] and [Pr84a]). Up to poset isomorphism, the connected minuscule posets can
be classified into three infinite families and two exceptional cases:

(a) the Cartesian product of two chains,
(b) the interval [∅, b2] in Young’s lattice,
(c) the special case Pa,1,1,a of the posets Pa,b,c,d from Example 2.9, and
(d) the posets P (E6) and P (E7) shown in Figure 2, with each element p labeled by #{c ∈M(P ) : p ∈ c}.

2

2

5

5

7

7

6 6

10

10

12

12

12

12

12

12

P (E6) =

12

12

45

45

36

36

25

78

78

78

78

78

78

78

78

66

66

60

60

33

33

42

42

49

18

18

4P (E7) =

Figure 2. The minuscule posets P (E6) and P (E7), with elements labeled by the number
of maximal chains passing through them.
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Theorem 2.10. Connected minuscule posets are mCDE, and, because they are graded, also CDE.

Proof. The above classification lets one verify this case-by-case.

(a) Products of two chains will be shown to be mCDE in Proposition 2.18.
(b) Intervals [∅, b2] in Young’s lattice are mCDE by Proposition 2.5 and [CHHM15, Corollary 3.8].
(c) The posets Pa,1,1,a of the family Pa,b,c,d are mCDE by Example 2.9.
(d) For P (E6) and P (E7), calculations in SAGE showed that

E(XP (E6)) = E(X(m)

P (E6)
) =

5

4
= E(YP (E6)), and

E(XP (E7)) = E(X(m)

P (E7)
) =

4

3
= E(YP (E7)). �

Accompanying Theorem 2.10 is Theorem 2.11, concerning the distributive lattice of order ideals J(P )
when P is a minuscule poset. We can characterize this lattice J(P ) in terms of the root system Φ, the
Weyl group W , and the minuscule dominant weight ω or simple root α corresponding to P (see [Pr84a]).
In particular, one way to specify P is to pick a minuscule simple root α and take the restriction of the
poset of positive roots Φ+ to the positive roots lying weakly above α. Then J(P ) has the following two
reinterpretations.

• J(P ) is the restriction of the (strong) Bruhat order to the set of minimum length coset representatives
for W/Wω, where Wω is the maximal parabolic subgroup fixing ω.

• J(P ) is the weight poset on the W -orbit of ω, which indexes the weight spaces (all having multiplicity
one) in the associated minuscule representation of the Lie algebra.

Theorem 2.11. For (not necessarily connected) minuscule posets P , the distributive lattice J(P ) is CDE.

Proof. Because disjoint unions affect the lattice of order ideals in a convenient way, namely

J(P1 t · · · t Pk) ∼= J(P1)× · · · × J(Pk),

and finite distributive lattices J(P ) are always graded, we can apply Proposition 2.13 (below) to reduce to
the case where P is connected. Now we again rely upon the classification of connected minuscule posets P
preceding Theorem 2.10.

For the family (a), where P = a×b is the Cartesian product of two chains a and b having a and b elements,
respectively, we have that J(P ) ∼= [∅, ba] is CDE by Theorem 1.1 (and, in fact, mCDE by Proposition 2.5
and [CHHM15, Corollary 3.8]).

For the family (b), where P = [∅, b2] in Young’s lattice, we have J(P ) ∼= [∅, δb]shifted for the strict
partition δb+2 = (b + 1, b, . . . , 3, 2, 1). S. Hopkins [Ho16] has shown using the methods of [CHHM15] that
J(P ) is not only CDE, but actually mCDE.

For the family (c) (that is, the special case P = Pa,1,1,a among the posets Pa,b,c,d from Example 2.9), one
finds that J(P ) ∼= Pa+1,1,1,a+1, and hence it is also CDE (and, in fact, mCDE).

For the family (d) of Figure 2, one finds that J(P (E6)) ∼= P (E7), which we checked is CDE (and, in
fact, mCDE) as part of Theorem 2.10. We have checked separately (both by hand and by computer) that
J(P (E7)) is CDE. �

In fact, all evidence points to the following strengthening of Theorem 2.11.

Conjecture 2.12. For any minuscule poset P , the distributive lattice J(P ) is mCDE.

If Question 2.20 below has an affirmative answer, then a case-by-case proof of Conjecture 2.12 is nearly
within reach. In light of the proof of Theorem 2.11, where J(P ) was actually shown to be mCDE for almost
all connected minuscule posets P , it would only remain to show that the distributive lattice J(P (E7)) is
mCDE. Nevertheless, we speculate that there should be a more uniform conceptual proof of Conjecture 2.12,
interpreting multichains in J(P ) via standard monomial theory; see [Pr84a].

2.2. CDE and poset operations. Most poset operations do not consistently respect CDE. For example,
disjoint union does not preserve the CDE property (Example 2.15), nor does ordinal sum (Example 2.16).
The Cartesian product of graded posets, however, is an exception.

Proposition 2.13. If two graded posets P and Q are CDE, then their Cartesian product P ×Q is also CDE.
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As Example 2.14 will demonstrate, the “graded” assumption in Proposition 2.13 is essential, and thus the
collection of all CDE posets is not closed under Cartesian product.

Before embarking on the proof of Proposition 2.13, we make an observation about graded posets. Recall
that a finite poset P is graded with rank(P ) = r if all maximal chains c ∈ M(P ) contain r + 1 elements;
that is, each c has the form {p0 l p1 l · · · l pr−1 l pr}. Here are some straightforward reformulations of
E(X) and E(Y ), the first of which was mentioned in Section 1:

E(X) =
#{(q, p) ∈ P × P : q l p}

#P
,(1)

E(Y ) =
#{(c, q, p) ∈M(P )× P × P : p ∈ c and q l p}

#{(c, p) ∈M(P )× P : p ∈ c}
,

and, in the case that P is graded, E(Y ) can be rephrased as

(2)
#{(c, q, p) ∈M(P )× P × P : p ∈ c and q l p}

(rank(P ) + 1) ·#M(P )
.

Proof of Proposition 2.13. The down-degree function, dP : P → N, satisfies dP×Q(p, q) = dP (p) + dQ(q).
Thus

E (XP×Q) =
1

#P ·#Q
∑

(p,q)∈P×Q

dP×Q(p, q)

=
1

#P ·#Q
∑
p∈P

∑
q∈Q

(dP (p) + dQ(q))

=
1

#P ·#Q

#Q
∑
p∈P

dP (p) + #P
∑
q∈Q

dQ(q)


=

1

#P

∑
p∈P

dP (p) +
1

#Q

∑
q∈Q

dQ(q)

= E(XP ) + E(XQ).

It therefore only remains to show that when P and Q are graded, one has

E(YP×Q) = E(YP ) + E(YQ).

If the rank of P is rP , then one can rephrase Expression (2) as

E(YP ) =
1

(rP + 1)#M(P )

∑
cP∈M(P )

∑
p∈cP

dP (p).

Thus, regarding dP (p) as a variable, its coefficient in E(YP ) (and also in E(YP ) + E(YQ)) is

(3)
#{cP ∈M(P ) : p ∈ cP }

(rP + 1)#M(P )
.

We now argue that dP (p) has the same coefficient in E(YP×Q). Note that maximal chains in P ×Q are
chains that lie within the set cP � cQ of all shuffles of some pair (cP , cQ) in M(P )×M(Q). Therefore

E (YP×Q) =
1

N

∑
(cP ,cQ)

∑
(p,q)

∑
c∈cP�cQ:
(p,q)∈c

(dP (p) + dQ(q)) ,

where (cP , cQ) runs over M(P )×M(Q) in the outer sum, (p, q) runs over cP × cQ in the inner sum, and

(4) N := #M(P ) ·#M(Q)

(
rP + rQ
rP

)
(rP + rQ + 1).

The coefficient of dP (p) in E(YP×Q) is therefore

(5) N−1 ·#
{

(cP , cQ, q, c) : (cP , cQ) ∈M(P )×M(Q), and (p, q) ∈ c ∈ cP � cQ
}
.

A priori, because the posets are graded, the number of pairs (q, c) completing a quadruple (cP , cQ, q, c) as
above should not depend on the chain cP or cQ, as long as p lies in cP . Thus one might as well replace cP
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and cQ by fixed chains [0, rP ] and [0, rQ] of the appropriate ranks, and fix i := rankP (p) in the chain [0, rP ],
while letting q vary over all values j in the chain [0, rQ]. Then Expression (5) may be rewritten as

(6) N−1 ·#
{
cP ∈M(P ) : p ∈ cP

}
·#M(Q) ·#

{
(j, c) : (i, j) ∈ c ∈ [0, rP ]� [0, rQ]

}
.

The cardinality of the set of pairs (j, c) in this set is
(
rP+rQ+1
rP+1

)
, via the bijection{

(j, c) : (i, j) ∈ c ∈ [0, rP ]� [0, rQ]
}
−→ [0, rP + 1]� [0, rQ]

(j, c) 7−→ c′

which forms c′ from (j, c) by adding an extra step to c of the form (i, j) → (i + 1, j), just after c passes
through (i, j). The reverse bijection “contracts out” of c′ its unique step of the form (i, j) → (i + 1, j) for
some j, producing c in the pair (j, c).

Plugging this and Equation (4) into Expression (6), yields the coefficient of dP (p) in E(YP×Q):

#{cP ∈M(P ) : p ∈ CP } ·#M(Q)
(
rP+rQ+1

rP

)
#M(P ) ·#M(Q)

(
rP+rQ
rP

)
(rP + rQ + 1)

=
#{cP ∈M(P ) : p ∈ CP }

(rP + 1)#M(P )
.

This is the same as its coefficient in E(YP ) + E(YQ), given in Expression (3), completing the proof. �

Example 2.14. Both P and Q must be graded in Proposition 2.13, as illustrated by the following non-CDE
product of two CDE posets.

( )
× =

Note that Proposition 2.13 immediately implies that all finite products of chains are CDE, and, in par-
ticular, that finite Boolean algebras are CDE. Moreover, such products enjoy the stronger mCDE property,
as we will show in Proposition 2.18. Proposition 2.18 is closely related to the Cartesian product operation,
and its proof does bear some resemblance to the proof of Proposition 2.13, but we postpone it until the end
of this section so as not to interrupt the discussion of poset operations more generally.

Example 2.14 also shows that disjoint unions P1 t P2 of CDE posets need not be CDE.

Example 2.15. The poset product in Example 2.14, is isomorphic to P t Q for two Boolean algebras P
and Q. Boolean algebras are CDE, by Proposition 2.13, but the disjoint union P tQ depicted above is not.
In fact, this can fail even when the two posets in the disjoint union are both graded and of the same rank.
For example, both

and

are CDE, but their disjoint union is not.

The next example shows that ordinal sum, like disjoint union, does not always preserve the CDE property.

Example 2.16. Let P be a 1-element antichain and Q a 2-element antichain. Both of these posets are CDE
because E(X) = E(Y ) = 0 in each case. However, their ordinal sum

P ⊕Q =

is not CDE because
E(XP⊕Q) = 2/3 while E(YP⊕Q) = 1/2.

We noted earlier that E(XP ) = E(XP∗) for any finite poset P . However, there exist posets for which
E(YP ) 6= E(YP∗). Moreover, poset duality does not preserve the CDE property.



POSET EDGE DENSITIES, REDUCED WORDS, TABLEAUX 11

Example 2.17. Consider the following pair of dual posets P and P ∗, with each element labeled by the
number of maximal chains passing through it.

P = 1

3

2

2

2

1 P ∗ = 1

3

2

2

2

1

It is straightforward to calculate

E(XP ) = E(XP∗) =
0 + 1 + 1 + 0 + 2 + 2

6
= 1 and

E(YP ) =
3 · 0 + 1 · 1 + 2 · 1 + 1 · 0 + 2 · 2 + 2 · 2

11
= 1, while

E(YP∗) =
2 · 0 + 2 · 0 + 1 · 1 + 2 · 2 + 1 · 1 + 3 · 2

11
=

12

11
.

Thus P is CDE, and P ∗ is not.

Recall the discussion after Example 2.14, about finite products of chains being mCDE. We now substan-
tiate that claim.

Given a finite poset P and a positive integer m, recall the probability space Ω(m)

P used in Definition 2.3.
For a random variable Z : P → R, let

E(Z;m)

denote the expectation of Z with respect to Ω(m)

P . As before, we write a for a chain having a elements.

Proposition 2.18. Given random variables Xk : ak → R, for k = 1, . . . , n, define Z : a1×· · ·×an → R by

Z(i1, . . . , in) := X1(i1) + · · ·+Xn(in).

Then

(7) E(Z;m) =

n∑
k=1

E(Xk;m).

Proof. Consider expanding each side of Equation (7) in terms of the definition of expectation. We then
check that, for each k = 1, 2, . . . , n and ik = 1, 2, . . . , ak, the coefficient of Xk(ik) is the same on either side
of Equation (7). By re-indexing, we may assume k = 1.

On the righthand side, the coefficient of X1(i1) is 1/a1, because Ω(m)

P and Ωunif
P coincide when P = a1.

On the lefthand side, the coefficient of X1(i1) is

(8)
g(i1)

g(1) + g(2) + · · ·+ g(a1)

where g(j) is the sum over all (n − 1)-tuples (j2, . . . , jn) of the number of m-element multichains passing
through (j, j2, . . . , jn) in a1×· · ·×an. Therefore, it suffices to show that g(1) = g(2) = · · · = g(a1), because
that would mean that the ratio in Expression (8) would equal 1/a1.

We approach this goal bijectively. Let G(j) consist of all pairs ((j2, . . . , jn), c) where c is an m-element
multichain c := (p1 ≤ · · · ≤ pm) in a1 × · · · × an, passing through (j, j2, . . . , jn). Therefore G(j) has
cardinality g(j). We will construct bijections ψ : G(j) → G(j + 1), for 1 ≤ j ≤ n − 1, thus showing that
g(1) = · · · = g(a1), as desired.

Given ((j2, . . . , jn), c) ∈ G(j) with c = (p1 ≤ · · · ≤ pm), there is a unique minimal i and maximal I such
that in the sub-multichain

pi ≤ pi+1 ≤ · · · ≤ pI−1 ≤ pI
of c, the first coordinate of each ph is in the two-element set {j, j + 1}. In particular, this sub-multichain
is nonempty because (j, j2, . . . , jn) = pi0 for some i0 ∈ [i, I]. Let p̂I be obtained by replacing the first
coordinate of pI by j + 1; thus either p̂I = pI or p̂I m pI . Define an order-reversing involution ϕ on the
subinterval [pi, p̂I ] within the poset a1 × · · · × an, sending p 7→ pi + (p̂I − p).
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Let c′ be the m-element multichain

c′ = (p1 ≤ · · · ≤ pi−1 ≤ ϕ(pI) ≤ ϕ(pI−1) ≤ · · · ≤ ϕ(pi+1) ≤ ϕ(pi) ≤ pI+1 ≤ · · · ≤ pm) ,

and write ϕ(pi0) = (j + 1, j′2, . . . , j
′
n). Note that ϕ(pi0) ∈ c′.

Finally, define ψ : G(j)→ G(j + 1) by

(c, (j2, . . . .jn)) 7→ (c′, (j′2, . . . , j
′
n)).

It is not hard to check that ψ : G(j) → G(j + 1) is bijective. In particular, the map ψ−1 identifies the
sub-multichain of c′ having first coordinates in {j, j + 1}, and then applies the same involution ϕ to this
sub-multichain, producing the multichain c.

Thus each set G(j) is equinumerous, so

g(i1)

g(1) + g(2) + · · ·+ g(a1)
=

1

a1
,

as desired. �

From Proposition 2.13, we obtain the following immediate corollary.

Corollary 2.19. A product of chains a1 × · · · × an is mCDE and CDE, with

E(X) = E(X(m)) = E(Y ) =

n∑
k=1

ak − 1

ak
.

By setting a1 = · · · = an = 2, we see that Boolean algebras 2n = 2× · · · × 2 of rank n are mCDE and CDE,
with E(X) = E(X(m)) = E(Y ) = n/2.

Propositions 2.13 and 2.18 raise some questions for which we have only partial answers. One might
wonder, for example, whether for any finite posets {Pk}nk=1 and random variables Xk : Pk → R, the random
variable Z : P1×· · ·×Pn → R defined by Z(p1, . . . , pn) =

∑n
k=1Xk(pk) satisfies E(Z;m) =

∑n
k=1 E(Xk;m).

Note that this can fail even when the posets {Pk} are graded; for example,

P1 = and P2 =

do not produce the desired property.
On the other hand, we have encountered no examples to preclude an affirmative answer to the following

question.

Question 2.20. Is the Cartesian product P1 × P2 of two mCDE posets P1 and P2, be they graded or not,
always mCDE?

An affirmative answer to this question would be useful in resolving Conjecture 2.12.
We now expand upon another topic related to poset operations, namely, duality. Despite Example 2.17,

self-duality is relevant for the CDE property. The authors thank both S. Fishel and T. McConville for
(independently) pointing out the CDE assertion in Proposition 2.21 below. Recall that a poset P is self-dual
if one has a poset isomorphism P ∼= P ∗, and we will say that a poset P is regular of valence ∆ if every
element p in P has the same vertex degree ∆ in the Hasse diagram.

Proposition 2.21. A finite, self-dual poset P that is regular of valence ∆ is always mCDE and CDE, with
E(X) = E(Y ) = ∆/2.

Proof. Given a poset isomorphism α : P → P ∗, we will show a stronger assertion: for any probability
distribution on the underlying set P = P ∗ that is α-invariant in the sense that Prob(α(p)) = Prob(p) for
all p ∈ P , the expected value of the down-degree random variable d : P → N is ∆/2. To see this, one
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calculates the expected value of d as follows:

∑
p∈P

Prob(p) · d(p) =
1

2

∑
p∈P

Prob(p) · d(p) +
∑
p∈P

Prob(α(p)) · d(α(p))


=

1

2

∑
p∈P

Prob(p) · (d(p) + d(α(p)))


=

1

2

∑
p∈P

Prob(p) ·∆

=
∆

2
.

The penultimate equality used the fact that the down-degree d(α(p)) of α(p) in P is the same as the up-degree
of p in P , meaning that d(p) + d(α(p)) is the sum of the up- and down-degrees of p, which is ∆.

Note that this then implies E(X) = E(X(m)) = E(Y ) = ∆/2, because

• the uniform distribution Ωunif
P on P = P ∗ used for X is obviously α-invariant, while

• the distributions Ω(m)

P and Ωchain
P on P = P ∗ used for X(m) and Y are α-invariant because α bijects

the chains (respectively, m-element multichains) through p in P with the same chains (respectively,
multichains) through α(p) in P ∗. �

Proposition 2.21 yields several interesting families of mCDE and CDE posets, many of them non-graded,
which we briefly discuss here.

2.2.1. Simplicial arrangements and oriented matroids. The first are the weak orders on the chambers of a
(central, essential) hyperplane arrangement in Rr (or, more generally, the topes of an oriented matroid of
rank r). We will stick to the language of chambers and arrangements rather than the more general oriented
matroid language here. Definitions and historical references can be found in [BLSWZ99, §4.2].

All such weak orders have the same underlying graph for their Hasse diagram, having vertices given by
the chambers C (the maximal cones into which the arrangement dissects the space), and an edge {C,C ′}
whenever two chambers C and C ′ are separated by exactly one hyperplane. When this graph is regular of
valence r, the arrangement is called simplicial. In particular, this occurs for the arrangements of reflecting
hyperplanes in a finite reflection group W of rank r, where chambers correspond to the group elements, and
the weak orders are all isomorphic to what is called the weak Bruhat order on W . One defines one of the
weak orders on the set of chambers generally by picking a base chamber C0, and decreeing that C ≤ C ′

if every hyperplane separating C0 from C also separates C0 from C ′. The map C 7→ −C is a poset anti-
automorphism, showing that all weak orders are self-dual. Proposition 2.21 then immediately implies the
following.

Corollary 2.22. For a (central, essential) simplicial hyperplane arrangement in Rr, or simplicial oriented
matroid of rank r, any of its weak orders on chambers is both mCDE and CDE, with

E(X) = E(X(m)) = E(Y ) =
r

2
.

In particular, this is true for the weak Bruhat order on any finite reflection group W .

2.2.2. Tamari orders and some generalizations. The set of all triangulations of an n-sided polygon carries a
well-known partial order known as the Tamari order [MPS12]. The underlying graph for its Hasse diagram
has an edge {T, T ′} if the triangulations T and T ′ differ only by a single diagonal flip, that is, from one
diagonal to the other inside a quadrangle triangulated by both T and T ′. After labeling the polygon vertices
cyclically as 1, 2, . . . , n, one has T l T ′ if the diagonal flip exchanges the diagonal {i, k} for the diagonal
{j, `} within a quadrangle ijk` that has (1 ≤)i < j < k < `(≤ n). As an example, the special case of the
CDE family P1,1,2,1 from Example 2.9 is the Tamari lattice [MPS12] on triangulations of a pentagon.

The Tamari order on triangulations of an n-gon is regular of valence n − 3, because each triangulation
has n− 3 internal diagonals that one can flip; in fact, it is also the 1-skeleton of a simple (n− 3)-dimensional
polytope, called the associahedron [Zi95, Example 9.11]. The Tamari order is self-dual, because the map on
the vertices swapping i↔ n+ 1− i reverses the order.
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Proposition 2.21 then immediately implies the following.

Corollary 2.23. Tamari order on triangulations of an n-gon is mCDE and CDE, with

E(X) = E(X(m)) = E(Y ) =
n− 3

2
.

The authors thank T. McConville for also pointing out the following generalizations of Tamari orders
that are all valence-regular, and, in some cases, self-dual. Valence-regularity stems from the fact that, in
each case, the object can be described as a partial order whose underlying Hasse diagram is the graph of all
maximal simplices in a pure (∆−1)-dimensional simplicial complex with the pseudomanifold property (that
is, every (∆− 2)-dimensional simplex lies in exactly two maximal simplices).

• N. Reading [Re06] defined a Cambrian lattice P associated to each orientation of the Coxeter diagram
of a finite Coxeter group (W,S). This P is always regular of valence |S|. It will be self-dual (and
hence both mCDE and CDE by Proposition 2.21) whenever the opposite orientation corresponds to
a diagram automorphism of (W,S); see [Re06, Theorem 3.5]. The Tamari order is the special case
when the Coxeter system (W,S) is of type A, and its Coxeter diagram is a path that is equioriented
(that is, the arrows all point in the same direction along the path).

• Derksen, Weyman, and Zelevinsky [DWZ10] introduced the notion of a quiver with potential (Q,W ),

and its associated (complete) Jacobian algebra A := Ĵ(Q,W ) over a field k. The operation of
mutation on (Q,W ) gives rise to its exchange graph, which is regular of valence |Q0|, the number
of nodes in the quiver Q. When the k-algebra A has finite representation type (that is, only finitely
many indecomposable modules up to isomorphism), this exchange graph is finite. Under this same
representation-finite hypothesis, the exchange graph also carries an orientation that is acyclic and
whose transitive closure is a poset P that coincides with both the poset P of support-tilting modules
for A and the poset of torsion-free classes for A; see [BY13, §2, §3, and Theorem 3.6] and [GM15].
Additionally, the Hasse diagram of P is equal to the exchange graph; that is, none of the directed
edges of the oriented exchange graph are implied transitively by others.

If, furthermore, there is an algebra isomorphism A∗ ∼= A, then the poset P will be self-dual
(and hence both mCDE and CDE by Proposition 2.21) [IRTT15, Proposition 1.3]. This occurs,
for example, whenever the potential W = 0 and Q is a representation-finite quiver whose opposite
orientation can be achieved by applying a graph automorphism. The Tamari order again corresponds
to the special case when the quiver is an equioriented path of type A.

• Santos, Stump, and Welker [SSW14] introduced the Grassman-Tamari orders GTk,n on the set of all
maximal noncrossing families of k element subsets of {1, 2, . . . , n}. The Tamari order is the special
case GT2,n. McConville [McC15] generalized this further in his grid orders GT (λ) where λ is any
shape, meaning any finite induced subgraph of the Z× Z rectangular grid. When λ is a k × (n− k)
rectangle, one has GT (λ) = GTk,n.

Let λ∗ be the result of rotating λ by 180◦, and let λt denote the shape obtained from λ by
transposing rows and columns. One can check that that GT (λ∗) ∼= GT (λ)∗ ∼= GT (λt) [SSW14,
Proposition 2.19]. Therefore the poset P = GT (λ) is self-dual (and hence both mCDE and CDE
by Proposition 2.21) whenever λ is invariant under either 180◦ rotation as in the case of GTk,n, or
under transposition of rows and columns.

• Pilaud [Pil15] introduced the poset of (k, n)-twists on the set of all k-triangulations of a convex
(n + 2k)-gon; the case k = 1 recovers the Tamari poset. One can check that this poset is always
self-dual (and hence both mCDE and CDE by Proposition 2.21) using its description as a quotient
of the weak Bruhat order on W = Sn by a congruence that is preserved under the involutive
anti-automorphism w 7→ w0w [Pil15, Definition 26].

2.3. Further CDE conjectures and questions.

2.3.1. Intervals in the shifted version of Young’s lattice. For a strict partition λ = (λ1 > λ2 > · · · > λ`),
the shifted Ferrers diagram for λ is drawn with each successive row indented one position further than its
predecessor. Some examples are shown below. There is a shifted version of Young’s lattice, which is simply
its induced partial order on the subset of all strict partitions. In light of Theorem 1.1, one might ask if there
exist some strict partitions λ whose interval [∅, λ]shifted in the shifted version of Young’s lattice is CDE. We
offer here two conjectural families of such partitions.
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Conjecture 2.24. For integers ` ≥ 1 and 0 ≤ k < `/2, the shifted Young’s lattice interval [∅, λ]shifted below
λ = (`, `− 2, `− 4, . . . , `− 2k) is CDE, with E(X) = E(Y ) = |λ|/(`+ 1).

Note that this conjecture is independent of the parity of `. For example, it would apply to both of the
shifted shapes (8, 6, 4) and (9, 7, 5, 3) depicted here.

Conjecture 2.25. For integers a, d, e ≥ 1 with d > a(e−1)+1, the shifted Young’s lattice interval [∅, λ]shifted
below λ = δd + δe ◦ aa is CDE, with E(X) = E(Y ) = (d+ a(e− 1))/4.

We depict here the shifted shape δ8 + δ3 ◦ 22, with the cells of δ3 ◦ 22 shaded.

Remark 2.26. The last two conjectures overlap. That is, Conjecture 2.24 with (`, k) = (2N − 1, N − 1) and
Conjecture 2.25 with (d, e, a) = (N + 1, N, 1) both assert that, for λ = (2N − 1, 2N − 3, · · · , 5, 3, 1), the
interval [∅, λ]shifted is CDE with E(X) = E(Y ) = N/2.

Interestingly, this particular interval [∅, λ]shifted is isomorphic to the distributive lattice of J(Φ+
W ) of order

ideals in the usual poset of positive roots Φ+
W for the root systems of types W = BN or CN . It should be

noted that for the root system of type W = Ad−1, the same lattice J(Φ+
W ) is isomorphic to the usual Young’s

lattice interval [∅, δd], and hence is shown to be CDE as part of Theorem 1.1. Unfortunately, for the root
system of type D4, it was checked that J(Φ+

D4
) is not CDE.

2.3.2. A few negative examples.

• Recall from Section 1 that weak Bruhat order on a finite Coxeter group is CDE (see Corollary 2.22).
One might ask whether strong Bruhat order has the same property, but this fails already for the
strong Bruhat order on the symmetric group S3, shown here, because E(X) = 4/3 and E(Y ) = 5/4.

• In light of Theorem 2.11, one might wonder whether to expect, more generally, that the distributive
lattices J(P × k), with P minuscule, will always be CDE. However, this fails already for the first
minuscule family, because J(a× b× k) is not CDE for a = b = k = 2.

• In light of Remark 2.26, one might ask whether the posets P = Φ+
W of positive roots for W of types

A or B/C might themselves be CDE. However, small examples show that this is not the case.
• One can easily check that the CDE fails for the five-element modular, non-distributive lattice depicted

below, which happens to be both the lattice of partitions of the set {1, 2, 3} and the n = q = 2 instance
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of the lattice of subspaces of (Fq)n.

• Corollaries 2.23 and 2.22 might make one might wonder whether any of the following poset families
– Bergeron and Préville-Ratelle’s m-Tamari lattices [BP12],
– Kapranov and Voevodsky’s higher Stasheff-Tamari posets [KV91],
– Manin and Schechtman’s higher Bruhat orders [MS89], or
– Law and Reading’s lattice of diagonal rectangulations [LR12],

all of which are related to Tamari and weak Bruhat orders, might be CDE. However, in each case,
we found small counterexamples.

3. Young’s lattice and tableaux

Computing E(X) and E(Y ) for Young’s lattice intervals [∅, λ] and their duals involves various known
flavors of tableaux. In this section, we review their definitions, provide formulas to count them generally,
and then specialize to rectangular staircase shapes.

Definition 3.1. A (set-valued) filling T of shape λ is an assignment of a finite subset T (x) ⊂ {1, 2, . . .} to
each cell x in the Ferrers diagram of λ. Define the monomial

(9) xT :=
∏

j∈T (y)

xj

as y runs through the cells of λ.

Several classes of fillings are of particular relevance to this work.

Definition 3.2. A column-strict set-valued tableau T of shape λ is a filling T in which

• max T (x) ≤ min T (x′) when x is to the left of x′ in the same row of λ, and
• max T (x) < min T (x′) when x is above x′ in the same column of λ.

This T is a standard set-valued tableau if xT = x1x2x3 · · ·xN for some integer N . A column-strict set-valued
tableau T is a (column-strict) tableau if #T (x) = 1 for every cell x ∈ λ, while T is barely set-valued if
#T (x) = 1 for all x ∈ λ with the exception of a unique x0 ∈ λ for which #T (x0) = 2.

Also useful are tableaux with row-by-row bounds on their values.

Definition 3.3. A column-strict set-valued tableau T of shape λ is flagged by a sequence of positive integers
ϕ = (ϕ1, ϕ2, . . .) if every cell x in row i of λ satisfies max T (x) ≤ ϕi. The sequence ϕ is called a flag.

Example 3.4.

123 3 35

46 67

7

12 3 56

4 79

8

1 3 5

2 6

4

1 1 3

2 3

4

1 13 3

3 4

4

1 12 2

2 3

3
column-strict standard standard column-strict barely flagged by

set-valued set-valued tableau tableau set-valued ϕ = (2, 3, 4)

Proposition 3.5. Fix λ = (λ1, . . . , λ`) and set ϕ := (2, 3, 4, . . .). There are bijections between

(a) standard tableaux of shape λ, and maximal chains in [∅, λ], or in its dual [∅, λ]∗;
(b) standard barely set-valued tableaux of shape λ, and triples (c, µ, ν) with µ ∈ c a maximal chain in

[∅, λ] and ν l µ a covering relation, not necessarily in c;
(c) standard barely set-valued tableaux of shape λ, and triples (c, µ, ν) with µ ∈ c a maximal chain in

[∅, λ]∗ and ν l µ a covering relation, not necessarily in c;
(d) column-strict tableaux of shape λ flagged by ϕ, and elements of [∅, λ]; and
(e) barely set-valued column-strict tableaux of shape λ flagged by ϕ, and covering relations νlµ in [∅, λ].
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Proof. For (a), the bijection sends T to the maximal chain whose ith step is the partition µ(i) occupied by
the values {1, 2, . . . , i} in T . For example,

1 3 5

2 6

4

7−→

(
∅ , , , , , ,

)
.

Maximal chains in the dual [∅, λ]∗ are in bijection with those in [∅, λ], by reading the chain backwards.
For (b), assume we are given a barely set-valued standard tableau T of shape λ, with n := |λ|, and

let T (x0) = {a0 < b0} for a unique cell x0. Then the bijection sends T 7→ (c, µ, ν) in which the chain
c = (µ(0), µ(1), . . . , µ(n)) has µ(i) the shape occupied by the ith smallest values among {1, 2, . . . , n+1}\{b0},
with µ := µ(b0−1), and ν := µ\{x0}. For example, T shown below has {1, 2, . . . , n+1}\{b0} = {1, 2, 3, 4, 6, 7},
and

1 25 6

3 7

4

7−→ (c, µ, ν), with c =

(
∅, , , , , ,

)
and ν = l = µ = µ(5−1).

For (c), the bijection is similar to (b), except that now T 7→ (c, µ, ν) where c = (µ(0), µ(1), . . . , µ(n)) has
µ(i) as the shape occupied by the (n−i)th smallest values among {1, 2, . . . , n+1}\{a0}, with µ := µ(n−(a0−1))

and ν := µ ∪ {x0}. For example, T shown below has {1, 2, . . . , n+ 1} \ {a0} = {1, 3, 4, 5, 6, 7}, and

1 25 6

3 7

4

7−→ (c, µ, ν), with c =

(
, , , , , , ∅

)
and ν = m = µ = µ(7−(2−1)).

For (d), the bijection sends the tableau T to the partition µ describing the cells x in T which are filled
with their row index i, rather than with the flag upper bound i+ 1 = ϕi. For example,

1 2 2

2 3

4

7−→ .

For (e), the bijection sends the tableau T to the covering relation ν l µ, where

• ν gives the cells x in T filled by their row index,
• the set difference (or skew shape) λ/µ gives the cells x filled by one more than their row index, and
• the unique cell x0 of µ/ν is filled by T (x0) = {i, i+ 1}, where i is its row index.

For example,

1 1 2 2

2 23 3

4

7−→ ν = l = µ

�

Recall that fλ is the number of standard tableau of shape λ. Let us now name the number of tableaux
of each kind appearing in Proposition 3.5.

Definition 3.6. Fix a partition λ = (λ1, . . . , λ`).

(a) Let fλ(+1) be the number of standard barely set-valued tableaux of shape λ.
(b) Let R(λ) be the number of column-strict tableaux of shape λ flagged by ϕ := (2, 3, 4, . . .).
(c) Let R(+1)(λ) be the number of column-strict barely set-valued tableaux of shape λ flagged by ϕ.

Combining Proposition 3.5 with Equations (1) and (2) implies the following.

Corollary 3.7. For any partition λ,

E(X[∅,λ]) =
R(+1)(λ)

R(λ)
= E(X[∅,λ]∗), and(10)

E(Y[∅,λ]) =
fλ(+1)

(|λ|+ 1)fλ
= E(Y[∅,λ]∗).(11)
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To count barely set-valued tableaux, our strategy is to convert them to tableaux with extra data.

Definition 3.8. Given a column-strict barely set-valued tableau T , its uncrowding is the column-strict
tableau T+ obtained as follows: if T (x0) = {a0 < b0} for the unique cell x0, then remove b0 from x0 and use
Robinson-Schensted-Knuth (RSK) row-insertion (see, for example, [St99, §7.11]) to bump b0 into the rows
of T strictly below the row of x0. For example,

1 1 2 2 4

2 3 34 4

4 5 5 7

5 6 6

6

+

= 1 1 2 2 4

2 3 3 4

4 4 5 7

5 5 6

6 6

,

where the bumped entries are in boldface.

Proposition 3.9. The uncrowding operation T 7→ T+ gives a bijection between

• column-strict barely set-valued tableaux of shape λ, and
• triples (T+, x, i0) where

– T+ is a column-strict tableau,
– x is one of its (inner) corner cells, and
– i0 is in the range 1, 2, . . . , i− 1, where i is the row-index of x.

Under this bijection, the shapes λ and λ+ of T and T+ are related by λlλ+ and λ+/λ = {x}. Furthermore,
i0 is the row-index of the unique cell x0 for which #T (x0) = 2.

Proof. Given (T+, x, i0), the inverse bijection (“crowding”) starts by doing reverse RSK row-insertion out
of the corner cell x in T+. However, rather than stopping when it reverse-bumps an entry out of row 1, the
procedure stops when an entry b0 from row i0 + 1 is about to bump an entry a0 of row i0, say in a cell x0,
and instead adds b0 as an extra set-valued entry to make T (x0) = {a0, b0}. �

Example 3.10. If one selects the boldface corner cell x in the figure below (row 5, column 2),

T+ = 1 1 2 2 4

2 3 3 4

4 4 5 7

5 5 6

6 6

then crowding the triples (T+, x, i0) for i0 = 1, 2, 3, 4 yields these barely set-valued tableaux, respectively.

1 1 2 2 4

2 3 3 4

4 4 5 7

5 56 6

6

1 1 2 2 4

2 3 3 4

4 45 5 7

5 6 6

6

1 1 2 2 4

2 3 34 4

4 5 5 7

5 6 6

6

1 1 2 23 4

2 3 4 4

4 5 5 7

5 6 6

6

Proposition 3.9 yields useful recurrences for counting barely set-valued tableaux.

Corollary 3.11. For any partition λ,

fλ(+1) =
∑

x=(i,j)

(i− 1)fλ∪{x},

where x runs through all outside corner cells of λ.

Proof. This is immediate from Proposition 3.9, restricting the uncrowding bijection to standard barely set-
valued tableaux T of shape λ, so that T+ in the triple (T+, x, i0) is a standard tableau. �
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Remark 3.12. A second proof of Corollary 3.11 uses the fact that fλ and fλ(+1) are the coefficients of
x1x2 · · ·x|λ| and x1x2 · · ·x|λ|+1 in the Schur function sλ and the stable Grothendieck polynomial Gλ; see
Definition 5.3 below. A formula of Lenart [Le99] gives the expansion

(12) Gλ =
∑
µ⊃λ

(−1)|µ/λ|gµ/λsµ,

where gµ/λ is the number of row-strict and column-strict tableaux of the skew shape λ/µ with entries in row
i in the range 1, 2, . . . , i − 1. If µ = λ ∪ {x} with x = (i, j), then gµ/λ = i − 1. Thus Corollary 3.11 also
follows by extracting the coefficient of the square-free monomial x1x2 · · ·x|λ|+1 in Equation (12).

Remark 3.13. Note that fλ
t

(+1) = fλ(+1) via the conjugation involution on standard set-valued tableaux.
Hence Corollary 3.11 implies a second identity; namely,

fλ(+1) =
∑

x=(i,j)

(j − 1)fλ∪{x},

where x still runs through all outside corner cells of λ. Concordance between these two identities requires
the difference between their righthand sides to equal zero; that is, we need

(13)
∑

x=(i,j)

c(x)fλ∪{x} = 0,

where c(x) = j − i is the content of the cell x = (i, j). Indeed, dividing Equation (13) by n · fλ gives a fact
that was first shown by Kerov ([Ke96, Equation (10.6)] and [Ke93]): the content c(x) has mean 0 when one
considers it as a random variable on the outside corners x of a random partition λ, grown one box at a time
using Plancherel measure.

We can now prove part of Theorem 1.1.

Proposition 3.14. For the rectangular staircase λ = δd(b
a), the interval [∅, λ] has E(Y ) = (d−1)ab

a+b .

Proof. Recall that Equation (11) says that E(Y ) = fλ(+1)
(|λ|+1)fλ

. The outside corners of λ are

xi :=
(
1 + b(d− 1− i), 1 + ai

)
for i = 0, 1, . . . , d− 1, and the hook-length formula shows that for the cell xi,

fλ∪{xi}

(|λ|+ 1)fλ
=

(
b
a+b

)
i

i!
·

(
a
a+b

)
d−1−i

(d− 1− i)!
,

where (z)j := z(z + 1) · · · (z + j − 1) is the Pochhammer symbol.
Thus Corollary 3.11 implies

E(Y ) =
fλ(+1)

(|λ|+ 1)fλ

=

d−1∑
i=0

ai · f
λ∪{xi}

fλ

=

d−1∑
i=1

ai ·

(
b
a+b

)
i

i!
·

(
a
a+b

)
d−1−i

(d− 1− i)!

= a ·
b
a+b

(
a
a+b

)
d−2

(d− 2)!
· 2F1

(
−(d− 2) b

a+b + 1

−
(
d− 3 + a

a+b

)∣∣∣∣∣ 1
)

= a ·
b
a+b

(
a
a+b

)
d−2

(d− 2)!
·

(−(d− 1))d−2(
−
(
d− 3 + a

a+b

))
d−2

=
(d− 1)ab

a+ b
,
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where the penultimate equality uses the Chu-Vandermonde summation 2F1

(
−m B

C

∣∣∣∣ 1) = (C−B)m
(C)m

. �

Recall from Section 1 that R(λ, q) :=
∑
µ⊂λ q

|λ| is the rank-generating function for [∅, λ], and that for an

outside corner cell x = (i, j) of λ in row i and column j, we defined two subshapes:

λ(x) := (λi+1, λi+2, . . .) and

λ(x) := (λ1, λ2, . . . , λi−1)− (j, j, . . . , j).

Recall also from Proposition 3.5 and Definition 3.6 that R(λ) = #[∅, λ] = [R(λ, q)]q=1 is the same as the

number of column-strict tableaux of shape λ flagged by ϕ = (2, 3, 4, . . .), while R(+1)(λ) is the number of
column-strict barely set-valued tableaux of shape λ flagged by ϕ.

Corollary 3.15. For any partition λ,

R(+1)(λ) =
∑

x=(i,j)

(i− 1) ·R(λ(x)) ·R(λ(x)),

where x runs through all outside corner cells of λ.

Proof. Restrict the domain of the uncrowding bijection to column-strict barely set-valued tableaux T of
shape λ flagged by ϕ = (2, 3, 4, . . .). Then, during the uncrowding of T , the bumpings that occur are always
to a value i in row i − 1 trying to bump a value i + 1 in row i. The bumping stops only when this value
i comes to rest at a corner cell x = (i, j) at the end of row i, because row i only contains the value i (in
particular, it has no i+ 1). In this situation, the resulting column-strict tableau T+ thus breaks into three
pieces:

• an i×j rectangle that is weakly to the upper left of x = (i, j), having every cell filled by its row-index,
• a column-strict tableau T (x) strictly north and east of x, filling λ(x), which is flagged by ϕ, and
• a column-strict tableau T(x) strictly south and west of x, filling λ(x), which, after reducing all of its

entries by i, would be flagged by ϕ.

For example, here is such a T and T+, along with T (x) and the version of T(x) with entries reduced by i = 5.

T = 1 1 1 1 1 2

2 2 2 2 3

3 3 3 34 4

4 4 5 5

5 5

6 7

7

7−→ T+ = 1 1 1 1 1 2

2 2 2 2 3

3 3 3 3 4

4 4 4 5

5 5 5

6 7

7

7−→ 1 1 2

2 3

3 4

5
•

1 2

2

The 5 × 3 rectangle weakly to the upper left of cell (5, 3) in T+ has every cell filled by its row-index, in
boldface. �

This lets us prove another part of Theorem 1.1.

Proposition 3.16. For the rectangular staircase λ = δd(b
a), the interval [∅, λ] has E(X) = (d−1)ab

a+b .

Proof. Recall that Equation (10) asserts that E(X) = R(+1)(λ)
R(λ) . As observed earlier, λ has outside corners

xk :=
(
1 + b(d− 1− k), 1 + ak

)
for k = 0, 1, . . . , d− 1.

Therefore Corollary 3.15 implies

R(+1)(λ) =

d−1∑
k=0

ak ·R(λ(xk)) ·R(λ(xk)).

After dividing by a, this yields

(14)
R(+1)(λ)

a
=

d−1∑
k=0

k ·R(λ(xk)) ·R(λ(xk)).
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The conjugation involution µ 7→ µt gives a bijection between the outside corners of λ and of λt, giving rise
to this counterpart for Equation (14):

(15)
R(+1)(λt)

b
=

d−1∑
k=0

(d− 1− k) ·R(λ(x)) ·R(λ(x)).

The conjugation also gives a poset isomorphism [∅, λ] ∼= [∅, λt] showing that R(λ) = R(λt), and that
these two posets have the same expectations E(X), meaning that R(+1)(λ) = R(+1)(λt). Therefore, adding
Equations (14) and (15) gives

R(+1)(λ)

a
+
R(+1)(λ)

b
= (d− 1)

d−1∑
k=0

R(λ(x)) ·R(λ(x)) = (d− 1)R(λ),

where the last equality used Proposition 1.5 specialized to q = 1. Hence one has

E(X) =
R(+1)(λ)

R(λ)
= (d− 1) · 1

1
a + 1

b

=
(d− 1)ab

a+ b
.

�

Propositions 3.14 and 3.16 imply that [∅, λ] is CDE when λ = δd(b
a) is a rectangular staircase.

4. Coxeter groups and 0-Hecke monoids

Computing E(X) and E(Y ) for lower intervals in the weak Bruhat ordering involves descent sets and
factorizations in Coxeter systems and 0-Hecke monoids. We begin this section by reviewing the relevant
concepts from Coxeter groups, then develop several formulas and results, and finally do the same for 0-Hecke
monoids.

4.1. Coxeter groups.

Definition 4.1. A Coxeter matrix is a finite set S and a choice of ms,t = mt,s in {2, 3, 4, . . .} ∪ {∞} for
s 6= t in S. The corresponding Coxeter system (W,S) is the group W generated by S, subject to relations
s2 = e for all s ∈ S, and

stst · · ·︸ ︷︷ ︸
ms,t factors

= tsts · · ·︸ ︷︷ ︸
ms,t factors

for s 6= t in S.

Definition 4.2. The length function ` : W → N for (W,S) is defined by

`(w) := min{` : w = s1s2 · · · s` for si ∈ S}.
A word s := (s1, s2, . . . , s`(w)), for which w = s1s2 · · · s`(w), is a reduced word for w.

Definition 4.3. The (right) descent set of w is

Des(w) := {s ∈ S : `(ws) < `(w)}.
The set of reflections in W is T := {wsw−1 : w ∈W, s ∈ S}. The (left) inversion set of w in W is

TL(w) := {t ∈ T : `(tw) < `(w)},
which has size `(w), and is computable from any s = (s1, . . . , s`(w)) ∈ Red(w) as follows [BB05, Corol-
lary 1.4.4]:

TL(w) =



s1,
s1s2s1,

s1s2s3s2s1,
...

s1s2 · · · s`(w) · · · s2s1


.

Definition 4.4. The (right) weak Bruhat order u ≤R w on W can be defined via any of the following
equivalent conditions (see [BB05, Chapter 3]):

(a) u ≤R w is the transitive closure of the covering relation ulR w, where u = ws and s ∈ Des(w);
(b) there exist u = u0, u1, . . . , u`−1, u` = w in W and si ∈ S such that uisi = ui+1 and `(ui+1) > `(ui);
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(c) there exists (s1, s2, . . . , s`(w)) ∈ Red(w) having a prefix (s1, s2, . . . , s`(u)) ∈ Red(u);

(d) `(u) + `(u−1w) = `(w); and
(e) TL(u) ⊆ TL(w).

We note the following facts about weak Bruhat order intervals, which follow trivially from Definition 4.4.

Proposition 4.5. In a Coxeter system (W,S),

(a) the weak Bruhat interval [u,w] is isomorphic to the lower interval [e, u−1w], via v 7→ u−1v, and
(b) the dual poset [e, w]∗ to the lower interval [e, w] is isomorphic to [e, w−1], via u 7→ w−1u.

The definition of ≤R allows us to reformulate Equations (1) and (2).

Corollary 4.6. For any Coxeter system (W,S) and w ∈W ,

E(X[e,w]) =
1

#[e, w]

∑
u≤Rw

# Des(u) and(16)

E(Y[e,w]) =
1

(`(w) + 1) ·# Red(w)

∑
s=(s1,s2,...,s`(w))

∈Red(w)

`(w)∑
i=0

# Des(s1s2 · · · si).(17)

It is helpful to reformulate Equation (16) for later use.

Proposition 4.7. For any Coxeter system (W,S) and any w ∈W ,

E(X[e,w]) =
1

2

#S − 1

#[e, w]

∑
u≤Rw

#{s ∈ S : ulR us 6≤R w}

 .

Proof. Because posets P and P ∗ have the same expectation for the variable X, one always has

E(XP ) =
E(XP ) + E(XP∗)

2
=

E(XP +XP∗)

2
.

For each p, the statistic XP (p) reports the down-degree of p in P . From the perspective of P ∗, the statistic
XP∗(p) computes the up-degree of p in P .

Specializing to P = [e, w], the down-degree of an element u ≤R w is # Des(u) = #{s ∈ S : us lR u}
as before, and its up-degree is #{s ∈ S : u l us ≤R w}. Therefore the sum of an element’s down- and
up-degrees is

#{s ∈ S : uslR u or ul us ≤R w} = #S −#{s ∈ S : ul us 6≤R w}.
Halving the expectation of this random variable on [e, w] yields the formula in the proposition. �

4.2. 0-Hecke monoids. We wish also to reformulate Equation (17), this time via words in the 0-Hecke
monoid.

Definition 4.8. Given a Coxeter matrix (ms,t) and Coxeter system (W,S), the associated 0-Hecke monoid
HW (0) is the monoid generated by {Ts}s∈S , subject to the quadratic relation T 2

s = Ts for s ∈ S and

TsTtTsTt · · ·︸ ︷︷ ︸
ms,t factors

= TtTsTtTs · · ·︸ ︷︷ ︸
ms,t factors

for s 6= t in S.

It turns out (see, for example, [No79]) that any choice of reduced word s = (s1, s2, . . . , s`(w)) ∈ Red(w)
defines the same element Tw := Ts1 · · ·Ts`(w)

in the monoid HW (0). Furthermore, Tw = Tw′ in HW (0) if and

only if w = w′ in W , and thus, as a set, one has

HW (0) = {Tw : w ∈W}.
This means that one can speak of a 0-Hecke word (s1, s2, . . . , sL) for w, meaning that Tw = Ts1Ts2 · · ·TsL
in HW (0). It also implies that one has the following relations in HW (0):

(18) TwTs =

{
Tws if `(ws) > `(w), and

Tw if `(ws) < `(w).

Factorizations Tw = TuTv in HW (0) give yet another characterization of the weak Bruhat order on W .
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Proposition 4.9. One has u ≤R w in W if only if there exists v ∈W with TuTv = Tw.

Proof. If u ≤R w then v = u−1w will satisfy TuTv = Tw. Conversely, if TuTv = Tw, then pick reduced words

s = (s1, . . . , s`(u)) ∈ Red(u) and (s′1, . . . , s
′
`(v)) ∈ Red(v).

Form a subword (s′i1 , . . . , s
′
ik

) by omitting any s′i for which `(us′1 · · · s′i−1s′i) < `(us′1 · · · s′i−1). Using the
relations in Equation (18) and the factorization

Tw = TuTv = TuTs′1 · · ·Ts′`(v) ,

one deduces that Tw = TuTs′i1
· · ·Ts′ik . Moreover, we have `(us′i1 · · · s

′
ij

) = `(u) + j for each j. Thus

(s1, . . . , s`(u), s
′
i1
, · · · , s′ik) is a reduced word for w, and it contains s ∈ Red(u) as a prefix. Hence u ≤R w. �

Definition 4.10. If Tw = Ts1Ts2 · · ·TsL in HW (0) with L = `(w) + 1, call (s1, s2, . . . , sL) a nearly reduced

word for w. Denote by Red(w) (resp., Red(+1)(w)) the set of reduced (resp., nearly reduced) words for w.

Proposition 4.11. For any Coxeter system (W,S) and w ∈W , one has a bijection{
((s1, s2, . . . , s`(w)), i, s) ∈ Red(w)× [0, `(w)]× S :

s ∈ Des(s1s2 · · · si)

}
−→ Red(+1)(w)

(
(s1, s2, . . . , s`(w)), i, s

)
7−→ (s1, s2, . . . , si, s, si+1, . . . , s`(w)).

Proof. The given map is well-defined because s ∈ Des(s1s2 · · · si) implies that

Ts1Ts2 · · ·Tsi · Ts · Tsi+1
· · ·Ts`(w)

= Ts1Ts2 · · ·Tsi · Tsi+1
· · ·Ts`(w)

= Tw.

It also surjects: given a nearly reduced word s+ = (s+1 , s
+
2 , . . . , s

+
`(w)+1) for w, if i is the smallest index with

(s+1 , s
+
2 , · · · , s

+
i+1) not reduced, then s := (s+1 , s

+
2 , · · · , s

+
i , s

+
i+2, s

+
i+3, · · · , s

+
`(w)+1) has (s, i, s+i+1) 7−→ s+. To

show injectivity, assume that the elements (s, i, s) and (t, j, t), with i ≤ j, have the same image under the
map. If one has strict inequality i < j, then the two words must match up as follows.

s1 s2 . . . si s si+1 . . . sj−1 sj sj+1 . . . s`(w)

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
t1 t2 . . . ti ti+1 ti+2 . . . tj t tj+1 . . . t`(w)

The word t is reduced, so the same must be true of its prefix (t1, t2, · · · , ti, ti+1) = (s1, s2, . . . , si, s), which
contradicts s ∈ Des(s1s2 · · · si). Therefore i = j, which then implies that (s, i, s) = (t, j, t) . �

This result has two interesting corollaries, including a reformulation of Equation (17).

Corollary 4.12. For any Coxeter system (W,S) and w ∈W ,

E(Y[e,w]) =
# Red(+1)(w)

(`(w) + 1) ·# Red(w)
.

In turn, because reversing a word gives bijections Red(w)↔ Red(w−1) and Red(+1)(w)↔ Red(+1)(w−1),
Corollary 4.12 implies the following fact.

Corollary 4.13. For any Coxeter system (W,S) and w ∈W ,

E(Y[e,w]) = E(Y[e,w−1]) = E(Y[e,w]∗).

5. Type A and vexillary permutations

There are special features to the weak Bruhat order intervals [e, w] in the case of Coxeter systems (W,S)
of type An−1. In this setting, W is the symmetric group Sn of all permutations on {1, 2, . . . , n}, and
S = {σ1, . . . , σn−1} with each σi being the adjacent transposition that swaps i and i+ 1. In this section, we
first explain how the theory of Schubert and Grothendieck polynomials let one recast E(Y[e,w]) for vexillary
permutations. We then show how to recast E(X[e,w]) for all permutations. Finally, we specialize to dominant
permutations, and then specialize even further to dominant permutations of rectangular staircase shape.
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5.1. Recasting E(Y[e,w]) for vexillary permutations. Recall that Section 1 defined vexillary, dominant,
Grassmannian, and inverse Grassmannian permutations.

Theorem 5.1. Fix a shape λ. For all vexillary permutation w of shape λ,

E(Y[e,w]) =
Red(+1)(w)

(`(w) + 1) Red(w)
=

fλ(+1)

(|λ|+ 1)fλ
= E(Y[∅,λ]).

Furthermore, for those permutations that are Grassmannian or inverse Grassmannian,

E(X[e,w]) = E(X[∅,λ]).

Example 5.2. We illustrate Theorem 5.1 for the partition λ = (3, 1, 1).

(a) Figure 3 depicts the dual interval [∅, λ]∗ and its isomorphic partner [e, 236145], where 236145 is
Grassmannian with code (1, 1, 3). Both have E(X) = 13/10 and E(Y ) = 23/18, as predicted by the

∅ 236145

231645

231465213645

231456213465123645

213456123465

123456

Figure 3. The interval [∅, (3, 1, 1)]∗ and its isomorphic partner [e, 23614] of Example 5.2.

theorem. These expectations, for both X and Y , would be shared by the interval [e, (236145)−1] ∼=
[∅, λ], because (236145)−1 = 412563 is inverse Grassmannian.

(b) On the other hand, Figure 4 depicts the intervals [e, 4231] and [e, 25314]. The permutation 4231 is
dominant with code λ = (3, 1, 1), while 25314 is vexillary with code (1, 3, 1) but is neither dominant
nor Grassmannian nor inverse Grassmannian.

1234

2134 1243

2314 2143 1423

2341 2413 4123

2431 4213

4231

12345

21345 12354

23145 21354 12534

23154 21534

23514 25134

25314

Figure 4. The intervals [e, 4231] and [e, 25314] of Example 5.2.
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These intervals all have E(Y ) = 23/18, as predicted by the theorem because 236145, 4231, and 25314 are
all vexillary of shape λ. However, E(X[e,4231]) = 5/4, while E(X[e,25314]) = 14/11, neither of which matches
E(X[e,236145]) = 13/10.

The proof of Theorem 5.1 uses the relation between reduced words and 0-Hecke words in type A and
the theory of Stanley symmetric functions and Lascoux and Schützenberger’s theory of Schubert and
Grothendieck polynomials (see, for example, [Bu02, BKSTY08, FG94, LS82, Man01, St84, La03]).

Definition 5.3. Given a partition λ, the Schur function sλ and the stable Grothendieck polynomial (for
partitions) Gλ are computed by

sλ =
∑
T

xT and

Gλ =
∑
T

(−1)|T |−|λ|xT ,

(see, for example, [Bu02, Theorem 3.1]) where the first (respectively, second) sum runs over all column-strict
tableaux (respectively, column-strict set-valued tableaux) T of shape λ, and xT is as defined in Equa-
tion (9). Given w ∈ Sn, the stable Schubert polynomial (or Stanley symmetric function) Fw and the stable
Grothendieck polynomial (for permutations) Gw are defined via

Fw =
∑

(σa1 ,...,σa`(w)
),

(b1,...,b`(w))

xb1 · · ·xb`(w)
and

Gw =
∑

(σa1 ,··· ,σaL ),

(b1,...,bL)

(−1)L−`(w)xb1 · · ·xb`(w)

(see, for example, [FG94, Examples 2.2 and 2.5]). In the first sum, (σa1 , · · · , σa`(w)
) ranges over all reduced

words for w, while in the second sum, (σa1 , · · · , σaL) ranges over all 0-Hecke words for w. In both cases,
(b1, b2, . . .) are weakly increasing sequences of positive integers satisfying the compatibility condition that
bi < bi+1 whenever ai ≤ ai+1.

Although it is not obvious, the functions sλ, Gλ, Fw, and Gw are all symmetric functions in the infinite
variable set {x1, x2, . . .}.

Finally for any w ∈ Sn, the (β)-Grothendieck polynomial is defined by

(19) G(β)
w =

∑
(σa1 ,··· ,σaL ),

(b1,...,bL)

βL−`(w)xb1 · · ·xb`(w)
,

where the summation is over the same pairs of sequences as for Gw, with the additional condition that

bi ≤ ai. We also mention that the β = 0 and β = −1 specializations G
(0)
w and G

(−1)
w are called the Schubert

polynomial and Grothendieck polynomial for w, respectively.

The relevance of these polynomials comes from their coefficients on certain squarefree monomials:

(20)

fλ is the coefficient of x1x2 · · ·x|λ| in sλ,

# Red(w) is the coefficient of x1x2 · · ·x`(w) in G(0)
w ,

fλ(+1) is the coefficient of − x1x2 · · ·x|λ|x|λ|+1 in Gλ,

# Red(+1)(w) is the coefficient of − x1x2 · · ·x`(w)x`(w)+1 in G(−1)
w .

There are also various known relationships between them.

• Note that sλ and Fw are the lowest-degree terms of Gλ and Gw, respectively.
• Fw and Gw are called stable Schubert and Grothendieck polynomials because

Fw = lim
N→∞

G
(0)

1N×w(x1, . . . , xN+n) and

Gw = lim
N→∞

G
(−1)
1N×w(x1, . . . , xN+n),

where 1N × w := (1, 2, . . . , N,N + w(1), N + w(2), . . . , N + w(n)) lies in SN+n.
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• For w a Grassmannian permutation of shape λ, one has

(21)
Fw = sλ and

Gw = Gλ.

Our proof of Theorem 5.1 will rest on the following generalization of the relations in (21).

Lemma 5.4. For a vexillary permutation w of shape λ, one has

Fw = sλ,

Gw = Gλ.

In order to prove this lemma, we will employ a tableau formula for G
(−1)
w from [KMY09] that involves

flagged set-valued tableaux. First recall the notion of a flag from Definition 3.3.
Suppose w is a vexillary permutation with shape λ having ` nonzero parts. One defines the flag ϕ(w) =

(ϕ1, ϕ2, . . . , ϕ`) as follows (see [KMY09, §5.2] for more details). Recall that the Rothe diagram of w is

D(w) := {(i, j) : 1 ≤ i, j ≤ n,w(i) > j,w−1(j) > i} ⊂ {1, 2, . . . , n} × {1, 2, . . . , n};

(see, for example, [Man01, §2.2.1]). Let µ(w) be the smallest Ferrers shape (northwest justified within the
square shape nn) that contains all the boxes of D(w). Overlay the northwest corner of λ(w) on the northwest
corner of the square nn. Let the diagonal of row i be the diagonal occupied by the rightmost box of λ(w) in
row i. (In fact it is true that λ(w) ⊆ µ(w).) Then set ϕi to be the row number of the southeastmost box of
µ(w) in the diagonal of row i.

Example 5.5. If w is the vexillary permutation 14253 ∈ S5, then its Rothe diagram D(w) is the set of row
and column indices (i, j) corresponding to the circles in this picture:

×

×

×

×

×

3

5

2

4

1

Then λ(w) = (2, 1) and µ(w) = (3, 3, 3, 3). Hence ϕ(w) = (2, 4).

The following case is especially important to this paper.

Example 5.6. If w is a dominant permutation, then λ(w) = µ(w) and therefore ϕ(w) = (1, 2, 3, . . .).

We now can state the following tableau formula, found in [KMY09] (up to minor notational conventions).

Theorem 5.7 ([KMY09, Theorem 5.8]). Let w be vexillary. Then

G(−1)
w (x1, . . . , xn) =

∑
T

(−1)|T |−|λ|xT ,

where the sum is over all set-valued tableaux of shape λ(w) flagged by ϕ(w).

One checks that w 7→ ϕ(w) commutes as follows with the operation w 7→ 1N×w on vexillary permutations:

(22) ϕ(1N × w) = ϕ(w) + (N,N, . . .) = (ϕ1 +N,ϕ2 +N, . . .) if ϕ(w) = (ϕ1, ϕ2, . . .).

We can now complete the proof of Lemma 5.4, and then of Theorem 5.1.

Proof of Lemma 5.4. The equality Fw = sλ for vexillary is well-known [St84, Corollary 4.2], but will also
follow once we show Gw = Gλ, since Fw and sλ are the lowest-degree terms in Gw and Gλ, respectively.

To this end, note that when working in finitely many variables x1, x2, . . . , xN for any positive integer N ,
Definition 5.3 implies that

Gw(x1, . . . , xN ) = G
(−1)
1N×w(x1, . . . , xN , 0, 0, 0, . . .).
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On the other hand, by Theorem 5.7 and Equation (22), one has

(23) G
(−1)
1N×w(x1, . . . , xN+n) =

∑
T

(−1)|T |−|λ|xT ,

where the sum is over all column-strict set-valued tableaux of shape λ flagged by (ϕ1+N,ϕ2+N, . . .). Hence

G
(−1)
1N×w(x1, . . . , xN , 0, 0, 0, . . .) =

∑
T

(−1)|T |−|λ|xT ,

where the sum is over column-strict set-valued tableaux with entries from 1, 2, . . . , N (that is, the flagging
condition on each row becomes redundant). Therefore, for any positive integer N ,

Gw(x1, . . . , xN ) = Gλ(x1, . . . , xN ).

Because Gw and Gλ are both symmetric functions this suffices to show Gw = Gλ. �

Proof of Theorem 5.1. To prove the first assertion in the theorem, note that Lemma 5.4 together with

Equation (20) show that when w is vexillary of shape λ, one has Red(w) = fλ and Red(+1)(w) = fλ(+1).
Together with the fact that `(w) = |λ|, this gives the middle equality here

E(Y[∅,λ]) =
fλ(+1)

(|λ|+ 1)fλ
=

# Red(+1)(w)

(`(w) + 1) ·# Red(w)
= E(Y[e,w]),

while the first equality is Equation (11) and the last equality is Corollary 4.12.
For the theorem’s second assertion, use Equation (10), Proposition 4.5, and Proposition 5.12 below. �

Remark 5.8. In fact, Lemma 5.4 also shows that any two 0-Hecke words for a vexillary permutation are K-
Knuth equivalent in the sense defined by Buch and Samuel [BS13, §5]. We will not go into the details, but this
can be deduced by combining Lemma 5.4, along with properties of the K-theoretic jeu de taquin introduced
by Thomas and Yong [TY09], together with results on the Hecke insertion introduced in [BKSTY08], [TY11,
Theorem 4.2] and [BS13, Theorem 6.2].

5.2. Evaluating E(X[e,w]) via noninversion posets. In type An−1, the set of reflections T for the Coxeter
system (W,S) is equal to all (not necessarily adjacent) transpositions T = {τij : 1 ≤ i < j ≤ n}, and we
have S = {σ1, . . . , σn−1} where σi := τi,i+1. Furthermore, the (left) inversion set of a permutation w is

#TL(w) := {τij : 1 ≤ i < j ≤ n and w−1(i) > w−1(j)}

and the number of inversions #TL(w) is the same as the Coxeter group length `(w).

Definition 5.9. For w ∈ Sn, the noninversion poset Pninv(w) is the partial order on {1, 2, . . . , n} in which
i <Pninv(w) j if and only if i <Z j and (i, j) 6∈ TL(w); that is, in which i < j and w−1(i) < w−1(j).

Definition 5.10. For a poset P on {1, 2, . . . , n}, a linear extension of P is a permutation w = w(1) · · ·w(n) ∈
Sn for which i <P j implies w−1(i) < w−1(j); that is, w(1) < w(2) < · · · < w(n) extends P to a linear
order. Denote by L(P ) the set of all linear extensions of P .

The following may then be viewed as the rephrasing in type A of the characterization of the weak order
that asserted u ≤R w if and only if TL(u) ⊂ TL(w).

Proposition 5.11. For any w ∈ Sn, one has [e, w] = L(Pninv(w)).

This reformulation allows us to prove the following.

Proposition 5.12. If w is Grassmannian of shape λ, then [e, w] ∼= [∅, λ]∗.

Proof. If λ = (λ1, . . . , λ`) with λ` > 0, then the one-line notation for w is a concatenation of two increasing
sequences; namely,

w(1) = λ` + 1 < w(2) = λ`−1 + 2 < · · · < w(`− 1) = λ2 + `− 1 < w(`) = λ1 + `

concatenated with the sequence w(` + 1) < · · · < w(n). Therefore the noninversion poset Pninv(w) contains
these two sequences as chains, along with some extra order relations between them. Thus any element u in
[e, w] = L(Pninv(w)) is a shuffle of these two increasing sequences, and hence is completely determined by the
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positions u−1(w(1)) < · · · < u−1(w(`)) occupied by the initial increasing sequence in the one-line notation
for w. This produces a poset isomorphism [e, w]→ [∅, λ]∗ defined by

u 7−→ µ = (µ1, . . . , µ`) = (u−1(w(`))− `, . . . , u−1(w(1))− 1).

�

Proposition 5.11 lets us reinterpret the denominator #[e, w] of E(X[e,w]). We next work on the numerator.

Definition 5.13. Given a covering relation i lP j in a poset P on {1, 2, . . . , n}, define a quotient poset
P/{i, j} that “sets i equal to j.” More formally, consider the equivalence relation ≡ij that has n− 1 blocks
by merging i and j into a single block, and check that the (reflexive, symmetric) transitive closure of the
union of the two binary relations ≤P and ≡ij gives a poset structure on the n− 1 blocks of ≡.

Proposition 5.14. Fix a permutation w ∈ Sn and set P := Pninv(w). Then∑
u≤Rw

#{s ∈ S : ulR us 6≤R w} =
∑
ilP j

#L(P/{i, j}),

and therefore

(24) E(X[e,w]) =
1

2

#S −
∑
ilP j

#L(P/{i, j})
#L(P )

 .

Proof. Given an element u ≤R w and s = σk = (k, k + 1) in S for which u lR us 6≤R w, let i := u(k) and
j := u(k + 1). Then ulR us implies i < j. Furthermore, u ∈ L(P ) but us 6∈ L(P ) implies that i <P j must
be a covering relation in P , and one can regard u/{i, j} as an element of L(P/{i, j}).

Conversely, given a covering relation ilP j and an element û of L(P/{i, j}), say with {i, j} = ûk, one can
recover from it an element u ≤R w with uluσk 6≤R w by replacing the block ûk by (u(k), u(k+1)) = (i, j). �

5.3. Dominant permutations and the forest hook-length formula. Arbitrary permutations w ∈ Sn

have no nice product formula to compute #[e, w] = #L(Pninv(w)), but dominant permutations do.

Definition 5.15. A finite poset P is a forest poset if each element is covered by at most one other element.

Proposition 5.16 ([BFLR12, Corollaries 5.3 and 5.4]). The poset Pninv(w) is a forest poset if and only if w
is dominant.

Forest posets have the following hook-length formula counting their linear extensions, first observed by
Knuth.

Proposition 5.17 ([Kn73, §5.1.4 Exercise 20]). Let P be a forest poset, and set P≤i := {j ∈ P : j ≤P i}.
Then

(25) #L(P ) =
#P !∏

i∈P
#P≤i

.

In computing E(X[e,w]) using Equations (24) and (25), the following reduction for forests will be useful.

Lemma 5.18. Fix a covering relation ilP j in a forest poset P . Then

#L(P/{i, j})
#L(P )

=
#P≤i
#P

·
∏
k>P i

#P≤k
(#P≤k − 1)

=
#P≤i
#P

·

∏
k∈β(i)

#P≤k∏
k∈α(i)

(#P≤k − 1)
,

where the sets α(i) and β(i) are defined by

α(i) := {k ∈ P : k >P i and either k mP i, or k covers more than one element} and

β(i) := {k ∈ P : k >P i and k is either maximal, or k is covered by an element of α(i)}.

Figure 5 shows a schematic for the local structure above a node i in a forest poset P , with the nodes in
α(i) circled and the nodes in β(i) boxed. Note that the sets α(i) and β(i) may intersect.
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i

Figure 5. Local structure above a node i in a forest posets P . Elements of α(i) are circled
and elements of β(i) are boxed.

Proof. The first equality comes from Equation (25) via a calculation

#L(P/{i, j})
#L(P )

=

(#P − 1)!
∏
k∈P

#P≤k

#P !
∏

k∈P/{i,j}

#(P/{i, j})≤k
=

#P≤i
#P

∏
k>P i

#P≤k
(#P≤k − 1)

,

because if we label elements of P/{i, j} by k ∈ P \ {i}, then #(P/{i, j})≤k is either #P≤k for k 6>P i, or
#P≤k − 1 for k >P i. The second equality comes from telescoping the factors in the rightmost product:

• for k 6∈ α(i), the denominator #P≤k − 1 cancels with #P≤` for the unique `l k, and
• for k 6∈ β(i), the numerator #P≤k is canceled by #P≤` − 1 for the unique `m k.

�

5.4. Computing E(X[e,w]) for dominant permutations of rectangular staircase shape. We now turn
to the computation of E(X[e,w]) when w is a dominant permutation of rectangular staircase shape δd(b

a).
As we will show, this has a very nice form.

Our strategy will approach this calculation via induction on d. To this end, throughout the remainder
of this section, fix the rectangle dimensions a, b ≥ 1, and assume, for convenience, that a ≤ b. For each
d ≥ 2, define w(d) to be the dominant permutation of shape δd(b

a). One can check that w(d) lies in SN

where N := a+ (d− 1)b, and that the one-line notation for w(d) is the following concatenation of contiguous
intervals of integers:

w(d) = Id−1 · · · I2 I1 I0 J1 J2 · · · Jd−1,
where Im := [mb+ 1,mb+a] and Jm := [(m− 1)b+a+ 1,mb]. The noninversion poset for this permutation,

P (d) := Pninv(w(d)),

is a forest poset with the schematic structure depicted in Figure 6, where each Ii and Jj is totally ordered

in increasing order. By convention, set J0 := ∅ and define the poset P (1) := I0 = [1, a] totally ordered in
increasing order.

Example 5.19. Fix a = 3 and b = 7. The posets for P (d) for d = 1, 2, 3, 4 are shown in Figure 7.

Recall that w(d) ∈ SN , where N = a+ (d− 1)b. Thus we can rewrite Equation (24) using Lemma 5.18 as

(26) E
(
X[e,w(d)]

)
=

1

2

#S −
∑
ilj

#L(P (d)/{i, j})
#L(P (d))

 =
1

2

(
N − 1− 1

N

d−1∑
`=0

θ
(d)
`

)
,
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Id−1 Id−2 I2 I1 I0

J1

J2

J3

Jd−1

Figure 6. Structure of the noninversion poset for a dominant permutation of rectangular
staircase shape δd(b

a).
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Figure 7. The noninversion posets P (1), P (2), P (3), P (4) for a = 3, b = 7, as described in Example 5.19.

where, for ` = 0, 1, 2, . . . , d− 1, we introduce the sums

θ
(d)
` :=

∑
i∈I`tJ`

not maximal
in P (d)

f (d)(i) with f (d)(i) := #P
(d)
≤i ·

∏
k∈β(i)

#P
(d)
≤k∏

k∈α(i)

(
#P

(d)
≤k − 1

) .
Note that the sum for θ

(d)
0 is why we have made the convention J0 = ∅.

For the sake of readability, we introduce the abbreviation

cj :=
jb

a+ (j − 1)b
.

Lemma 5.20. The sums θ
(d)
` have these explicit formulas:

θ
(d)
` =

{
(a2 + `b(b− a)) · c`+1c`+2 · · · cd−1 if ` = 0, 1, 2, . . . , d− 2, and

(a2 + (d− 1)b(b− a))−N if ` = d− 1.
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Proof. For nonmaximal i in P (d), the elements of α(i) are min Jj for various j. Similarly, the elements of
β(i) are maxJj or max Ij , for various j. Now observe that

#P
(d)
≤max Jj

= jb,

#P
(d)
≤max Ij

= a, and

#P
(d)
≤min Jj

= a+ (j − 1)b+ 1.

From this, one can check that for nonmaximal i in P (d),

f (d)(i) = c`+1c`+2 · · · cd−1 ·
{
a if i ∈ I`,
`b if i ∈ J`

}
.

For ` = 0, 1, 2, . . . , d−2, the intervals I` and J` contain a and b elements, respectively, and all are nonmaximal
in P (d). On the other hand, all but one element from each of Id−1 and Jd−1 are nonmaximal. Therefore,

θ
(d)
` =

{
c`+1c`+2 · · · cd−1 · a · a+ c`+1c`+2 · · · cd−1 · `b(b− a) if ` = 0, 1, 2, . . . , d− 2, and

a · (a− 1) + (d− 1)b · (b− a− 1) if ` = d− 1.

This agrees with the formulas given in the statement of the lemma. �

Corollary 5.21. For a, b ≥ 1 and d ≥ 2, and for w the dominant permutation of shape δd(b
a),

E(X[e,w]) =
(d− 1)ab

a+ b
.

Proof. We may assume without loss of generality that a ≤ b by Proposition 4.5(b), and hence w = w(d). Set
N := a+ (d− 1)b. By Equation (26), it suffices to show that

(27)
1

N

d−1∑
`=0

θ
(d)
` = N − 1− 2(d− 1)

ab

a+ b
= a− 1 + (d− 1)

b(b− a)

a+ b

for d ≥ 1. We show the leftmost and rightmost sides of Equation (27) are equal via induction on d. In the
base case d = 1,

1

N

d−1∑
`=0

θ
(d)
` =

1

a
θ
(1)
0 =

1

a
(a(a− 1)) = a− 1 = a− 1 + (d− 1)

b(b− a)

a+ b
.

In the inductive step, we use the following recursive reformulation of Lemma 5.20:

(28) θ
(d)
` =


cd−1θ

(d−1)
` if ` = 0, 1, 2, . . . , d− 3,

cd−1

(
θ
(d−1)
` + a+ (d− 2)b

)
if ` = d− 2, and

(a2 + (d− 1)b(b− a))−N if ` = d− 1.

Now assume the left and right sides of Equation (27) are equal for d− 1, and use Equation (28) to compute

1

N

d−1∑
`=0

θ
(d)
` =

cd−1
N

(
d−2∑
`=0

θ
(d−1)
` + a+ (d− 2)b

)
+

1

N

(
(a2 + (d− 1)b(b− a))−N

)
=
cd−1
N

(
(a+ (d− 2)b)

(
a− 1 + (d− 2)

b(b− a)

a+ b

)
+ a+ (d− 2)b

)
+

(a2 + (d− 1)b(b− a))

N
− 1

= a− 1 + (d− 1)
b(b− a)

a+ b
,

via straightforward algebra in the last step. �

Finally we can complete our goal.

Proof of Theorem 1.1. Combine Propositions 3.14, 3.16, Theorem 5.1, and Corollary 5.21. �
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6. Macdonald and Fomin-Kirillov type formulas

This section presents a conjecture, Conjecture 6.3 below, inspired both by Corollary 1.3 and by a remark-
able formula of Fomin and Kirillov [FK97] which we recall now. Let w0 := n(n − 1) · · · 21 be the longest
element of Sn, which is the dominant permutation of the staircase shape δn, having `(w0) = N :=

(
n
2

)
.

Theorem 6.1 ([FK97, Theorem 1.1]).∑
(σi1 ,σi2 ,...,σiN )

(x+ i1)(x+ i2) · · · (x+ iN ) = N !
∏

1≤i<j≤n

2x+ i+ j − 1

i+ j − 1
,

where the sum runs over all (σi1 , σi2 , . . . , σiN ) in Red(w0).

Extracting the coefficient of xN in Theorem 6.1 gives Stanley’s result [St84] that # Red(w0) = fδn , while
setting x = 0 recovers a result of Macdonald [Mac91, page 91].

To state our conjecture, we define a sum generalizing the left side in Theorem 6.1.

Definition 6.2. For a permutation w and a nonnegative integer L, define a polynomial in x of degree L by

FK(w,L) :=
∑

(σi1 ,σi2 ,··· ,σiL )

(x+ i1)(x+ i2) · · · (x+ iL),

where the sum runs over all 0-Hecke words (σi1 , σi2 , . . . , σiL) for w of length L.

In particular, FK
(
w0,

(
n
2

))
is the sum in Theorem 6.1.

Conjecture 6.3. Let w be the dominant permutation of rectangular staircase shape λ = δd(b
a). Then for

` := `(w) = |λ| =
(
d
2

)
ab, the polynomial FK(w, `) divides FK(w, `+ 1) in Q[x], with quotient

FK(w, `+ 1)

FK(w, `)
=

(
`+ 1

2

)(
4x

d(a+ b)
+ 1

)
.

Example 6.4. If d = 3, a = b = 1, then λ = (2, 1) with ` = |λ| = 3 and w = 321. Using the two reduced
words and eight nearly reduced words for w computed in Example 1.4, one finds that

FK(w, 3) = (x+ 1)(x+ 2)(x+ 1) + (x+ 2)(x+ 1)(x+ 2)

= (x+ 1)(x+ 2)(2x+ 3),

FK(w, 4) = 2(x+ 1)3(x+ 2) + 4(x+ 1)2(x+ 2)2 + 2(x+ 1)(x+ 2)2

= 2(x+ 1)(x+ 2)(2x+ 3)2,

so that FK(w, 3) does divide FK(w, 4), with quotient

FK(w, 4)

FK(w, 3)
= 2(2x+ 3) = 4x+ 6.

This agrees with Conjecture 6.3, which predicts

FK(w, 4)

FK(w, 3)
=

(
4

2

)(
4x

3(1 + 1)
+ 1

)
= 4x+ 6.

The following relation was one of our motivations for Conjecture 6.3, and provides some evidence for it.

Proposition 6.5. Conjecture 6.3 would imply Corollary 1.3.

Proof. For any permutation w and any L, the (leading) coefficient cL on xL in FK(w,L) counts the number
of 0-Hecke words for w of length L. Therefore whenever w is vexillary of shape λ and ` = |λ|, Lemma 5.4
implies c` = fλ and c`+1 = fλ(+1).

On the other hand, for w dominant of rectangular staircase shape λ = δd(b
a) and ` = |λ|, Conjecture 6.3

would imply that FK(w, `+ 1)/FK(w, `) is a linear polynomial rx+ s whose leading coefficient r equals(
`+ 1

2

)
4

d(a+ b)
=
c`+1

c`
=
fλ(+1)

fλ
.

This is equivalent to the assertion of Corollary 1.3, using ` =
(
d
2

)
ab. �
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As further evidence in support of Conjecture 6.3, we will eventually verify it in the case d = 2; that is
for rectangular shapes λ = ba. In fact, it will turn out to be more convenient to work with an equivalent
tableau version of the conjecture, whose statement requires some additional notation.

Definition 6.6. For a flag ϕ = (ϕ1, ϕ2, . . .), denote by SSYT(λ, ϕ, j) the collection of all column-strict set-
valued tableaux of shape λ that are flagged by ϕ, and whose total number of entries is j (in other words,
j =

∑
y #T (y) where y runs through the cells of λ). In particular, SSYT(λ, ϕ, j) is empty unless j ≥ |λ|.

The equivalent tableau version of Conjecture 6.3 is the following.

Conjecture 6.3′. Let w be the dominant permutation of rectangular staircase shape λ = δd(b
a). Then for

` := `(w) = |λ| =
(
d
2

)
ab, and for any positive integer x, the flag ϕ = (1, 2, 3, . . .) + (x, x, x, . . .) produces

#SSYT(λ, ϕ, `+ 1)

#SSYT(λ, ϕ, `)
=

2` · x
d(a+ b)

.

The equivalence of Conjectures 6.3 and 6.3′ will follow from the next theorem, proven in Section 7,
combining ideas of [FS94, FK94, FK96, FK97] with Equation (23). To state it, recall that the Stirling
number of the second kind S(L, j) counts partitions of {1, 2, . . . , L} into j blocks.

Theorem 6.7. For vexillary w of shape λ and positive integer x, the flag ϕ := ϕ(w) + (x, x, x, . . .) satisfies

(29) FK(w,L) =

L∑
j=|λ|

#SSYT(λ, ϕ, j) · j!S(L, j).

Remark 6.8. Theorem 6.7 is an extension of Theorem 6.1 in the following sense. If w = w0 then λ = δn.
Setting L = |λ| =

(
n
2

)
= N in Equation (29) gives

FK(w0, N) = #SSYT(δn, (1 + x, 2 + x, . . .)) ·N !.

Theorem 6.1 is then derived from this in [FK97] by an application of a formula of Proctor [Pr84b], for plane
partitions of staircase shape with largest bounded part, which implies

#SSYT(δn, (1 + x, 2 + x, . . .) =
∏

1≤i<j≤n

2x+ i+ j − 1

i+ j − 1
.

In contrast, for arbitrary j, even when w = w0, we know of no such product formulas for #SSYT(λ, ϕ, j).

Let us assume the validity of Theorem 6.7 for the moment, and check the following.

Corollary 6.9. Conjectures 6.3 and 6.3 ′ are equivalent.

Proof. Let w be a dominant permutation of shape λ, and set ` := |λ| = `(w). Dominant permutations w
always have flag ϕ(w) = (1, 2, 3, . . .), which explains the choice ϕ := (1, 2, 3, . . .)+(x, x, x, . . .). Now applying
Theorem 6.7 twice, with L = `, and L = ` + 1, and using the facts that S(`, `) = 1 = S(` + 1, ` + 1) and

S(`+ 1, `) =
(
`+1
2

)
, one obtains

FK(w, `+ 1)

FK(w, `)
=
`! ·
(
`+1
2

)
·#SSYT(λ, ϕ, `) + (`+ 1)! ·#SSYT(λ, ϕ, `+ 1)

`! ·#SSYT(λ, ϕ, `)
=

(
`+ 1

2

)
+ (`+ 1) · ρ

where ρ := #SSYT(λ, ϕ, `+ 1)/#SSYT(λ, ϕ, `) is an abbreviaton for the ratio that appears in Conjecture 6.3′.
Thus Conjecture 6.3 holds if and only if

FK(w, `+ 1)

FK(w, `)
=

(
`+ 1

2

)
+ (`+ 1)ρ =

(
`+ 1

2

)(
4x

d(a+ b)
+ 1

)
.

Upon division by
(
`+1
2

)
, this assertion is equivalent to

1 +
2

`
ρ =

4x

d(a+ b)
+ 1, and also ρ =

2`x

d(a+ b)

which is exactly Conjecture 6.3′. �
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Corollary 6.10. Conjectures 6.3 and 6.3 ′ hold when d = 2; that is, for dominant w of rectangle shape
λ = ba.

Proof. It will be most convenient to work with Conjecture 6.3′. Our strategy will once again use the
uncrowding map in Definition 3.8 to convert barely set-valued tableaux to ordinary tableaux.

For a partition λ, let CST≤t(λ) denote the set of column-strict (ordinary) tableaux of shape λ with all
entries in the range {1, 2, . . . , t}. Note that column-strictness implies for rectangular shapes ba that

SSYT(ba, ϕ, ab) = CST≤x+a(ba),

where ϕ = (1, 2, 3, . . . , a) + (x, x, x, . . . , x).
On the other hand, consider the restriction of the uncrowding map to the domain SSYT((ba), ϕ, ab + 1).

Since the rectangle ba has only outer corner cell in a row below 1, namely in row a+ 1, the result always has
shape (ba, 1). Thus, one obtains a bijection

SSYT(ba, ϕ, ab+ 1) −→ CST≤x+a((ba, 1))× {1, 2, . . . , a},
T 7−→ (T+, i0)

which shows #SSYT(ba, ϕ, ab+ 1) = a ·#CST≤x+a((ba, 1)), and hence

(30)
#SSYT(ba, ϕ, `+ 1)

#SSYT(ba, ϕ, `)
=
a ·#CST≤x+a((ba, 1))

#CST≤x+a(ba)
.

The numerator and denominator here are calculable via the hook-content formula ([St71, Theorem 15.3])

#CST≤t(λ) =
∏
y

t+ c(y)

h(y)

where the product runs over the cells y = (i, j) of λ, with c(y) = j−i its content, and h(y) = λi+λ
t
j−(i+j)+1

its hook-length. Here are the relevant values of t+ c(y) = (x+ a) + c(y) and h(y) for cells y of (ba, 1):

x+ a x+ a+ 1 x+ a+ 2 · · · x+ a+ b− 1
x+ a− 1 x+ a x+ a+ 1 · · · x+ a+ b− 2

...
...

...
. . .

...
x+ 1 x+ 2 x+ 3 · · · x+ b− 1
x

a+ b a+ b− 1 a+ b− 2 · · · a
a+ b− 1 a+ b− 2 a+ b− 3 · · · a− 1

...
...

...
. . .

...
1 + b b− 1 b− 2 · · · 1

1

On the other hand, for cells y of ba, the relevant values of t + c(y) = (x + a) + c(y) are precisely the same
except that the boldfaced value x does not arise, and the values of h(y) are the same except for the first
column, which are a+ b− 1, a+ b− 2, . . . , b+ 1, b in that setting. Therefore,

#CST≤x+a((ba, 1))

#CST≤x+a(ba)
=

xb

a+ b
.

Comparing this with Equation (30) proves the d = 2 case of Conjecture 6.3′, because then ` = |λ| = ab. �

7. Proof of Theorem 6.7.

As mentioned earlier, our proof combines ideas of [FS94, FK96, FK94, FK97] with Equation (23).
Let R denote the 0-Hecke algebra of type An−1. That is, R is the monoid algebra for the 0-Hecke monoid

HW (0), where (W,S) is the Coxeter system W = Sn with the adjacent transpositions S = {σ1, . . . , σn−1} as
Coxeter generators. Thus R has Z-basis given by {Tw}w∈Sn and multiplication extended Z-linearly from the
0-Hecke monoid HW (0). Abbreviate here Ti := Tσi for i = 1, 2, . . . , n− 1, as was done in the Introduction.

We will also consider various rings obtained from R by extension of scalars, such as R ⊗Z Q[[t]] or
R⊗ZQ[[t1, . . . , tn]]. Within these larger rings, we will also use without further mention a common exponential
change-of-variables in which x := et − 1 in Q[[t]], and analogously, xi := eti − 1 in Q[[t1, . . . , tn]].

The following lemma is implicit in [FK94] (cf. [FS94]), which explicitly states a consequence of it (see
Remark 7.7 below). Indeed, the result is known to the authors of [FK94]; see Lemma 5.6 of hep-th/9306005.
However, for convenience we include a proof. Recall that for w ∈ Sn, the β-Grothendieck polynomial
G(1) = G(x1, . . . , xn−1) defined in Equation (19) is a polynomial in n− 1 variables.
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Lemma 7.1 (Fomin-Kirillov). In the ring R⊗Q Q[[t]],

et(T1+2T2+···(n−1)Tn−1) =
∑
w∈Sn

G(1)
w (et − 1, . . . , et − 1) · Tw =

∑
w∈Sn

G(1)
w (x, . . . , x) · Tw.

Proof. As in [FK96], define hi(t) := etTi . Then following [FK94], since T 2
i = Ti, one has

hi(t) = etTi =

∞∑
k=0

(tTi)
k

k!
= 1 + tTi + t2Ti/2! + · · · = 1 + (et − 1)Ti = 1 + xTi.

It is a main result of [FK94] that, with notations

(31)
Ai(t) := hn−1(t)hn−2(t) · · ·hi(t) and

G(t1, t2, . . . , tn−1) := A1(t1)A2(t2) · · ·An−1(tn−1),

the “Grothendieck element” G(t1, t2, . . . , tn−1) expands as follows in R⊗Z Q[[t1, . . . , tn−1]]:

G(t1, t2, . . . , tn−1) =
∑
w∈Sn

G(1)
w (et1 − 1, . . . , etn−1 − 1) · Tw =

∑
w∈Sn

G(1)
w (x1, . . . , xn−1) · Tw

In fact, this is equivalent to the definition of G
(1)
w from Equation (19): working in the variables x1, . . . , xn−1,

when one expands G(t1, t2, . . . , tn−1) as defined in Equation (31), its coefficient of Tw is exactly the sum over
pairs ((σa1 , . . . , σaL), (b1, . . . , bL)) on the right side of Equation (19).

Thus, it remains to prove that specializing the variables t1 = t2 = · · · = tn−1 to the single variable t gives

(32) G(t, t, . . . , t) = A1(t)A2(t) · · ·An−1(t) = et(T1+2T2+···+(n−1)Tn−1).

To this end, we employ a mutatis mutandis modification of an argument of [FS94]. For brevity, we refer the
reader to [FS94] for those details that remain unchanged.

It is easy to check that the collection {hi} satisfies the relations

(I) hi(s)hj(t) = hj(t)hi(s) if |i− j| ≥ 2,
(II) hi(s)hi(t) = hi(s+ t), hi(0) = 1 (and therefore hi(s)hi(−s) = 1),

as well as the Yang-Baxter equation [FK96]

(III) hi(s)hi+1(s+ t)hi(t) = hi+1(t)hi(s+ t)hi+1(s).

The following lemma is the analogue of [FS94, Lemma 2.1]. Its proof is exactly the same as that result’s,
because it only depends on the relations (I)–(III).

Lemma 7.2. Ai(s) and Ai(t) commute.

Define [FS94, §4]

Ãi(t) = hi(t)hi+1(t) · · ·hn−1(t)

and let
G̃(t1, . . . , tn−1) := Ãn−1(tn−1)Ãn−2(tn−2) · · · Ã1(t1).

Lemma 7.3. Ai(s) and Ãi(t) commute.

Proof. The proof is the same as in [FS94, Lemma 4.1], except we use (II) and Lemma 7.2 (where the original
uses the exact analogues, [FS94, Lemmas 3.1(ii) and 2.1]). �

Lemma 7.4. Ãn−1(tn−1) · · · Ãi(ti)Ai(s) = hn−1(tn−1 + s) · · ·hi(ti + s)Ãn−1(tn−2) · · · Ãi+1(ti).

Proof. One follows [FS94, Lemma 4.2] except to use Lemma 7.3 rather than their [FS94, Lemma 4.1]. �

Lemma 7.5.

G̃(t1, . . . , tn−1)G(s1, . . . , sn−1) =

n−2∏
c=2−n

∏
i−j=c,i+j≤n

hi+j−1(si + tj).

Here the multiplication of the factors associated to c = 2− n, 3− n, . . . , n− 2 is done from left to right. The
factors in the second product commute.

Proof. As in [FS94, Lemma 4.3], this follows from repeated application of Lemma 7.4 combined with re-
arrangement of factors. To see that the factors in the second product commute, note that if (i, j), (i′, j′) ∈
N×N satisfy i− j = c = i′− j′ and i+ j = i′+ j′− 1, we would have 2i− 2i′ = −1, which is impossible. �
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The following is the analogue of [FS94, Lemma 5.1].

Lemma 7.6. G(t, t, . . . , t)G(s, s, . . . , s) = G(t+ s, . . . , t+ s).

Proof. Same as that of [FS94, Lemma 5.1], using Lemma 7.5 above in place of their [FS94, Lemma 4.3]. �

We are now ready to prove Equation (32) as in the proof of [FS94, Lemma 2.3]. Using Lemma 7.6, and
the fact that G(0, 0, . . . , 0) = 1, one finds that

d

dt
G(t, t, . . . , t) = lim

h→0

G(t+ h, t+ h, . . . , t+ h)−G(t, t, . . . , t)

h

= G(t, t, . . . , t) · lim
h→0

G(h, h, . . . , h)− 1

h
= G(t, t, . . . , t) · F

where F :=
[
d
dtG(t, t, . . . , t)

]
t=0

, an element of R. From this one concludes that, in R⊗Z Q[[t]], one has

(33) G(t, t, . . . , t) = etF .

On the other hand, since G(t, . . . , t) := A1(t) · · ·An−1(t), one can use the Leibniz rule repeatedly to compute[
d

dt
hi(t)

]
t=0

= Ti and

[
d

dt
Aj(t)

]
t=0

= Tn−1 + Tn2
+ · · ·+ Tj .

Therefore

F =

[
d

dt
A1(t) · · ·An−1(t)

]
t=0

=

n−1∑
j=1

[
A1(t)A2(t) · · ·Aj−1(t) · d

dt
Aj(t) ·Aj+1(t) · · ·An−1(t)

]
t=0

=

n−1∑
j=1

(Tn−1 + Tn2
+ · · ·+ Tj) = T1 + 2T2 + · · ·+ (n− 1)Tn−1.

Plugging this into Equation (33) proves Equation (32), and completes the proof of Lemma 7.1. �

Proof of Theorem 6.7. By inspection, one has

et(T1+2T2+···(n−1)Tn−1) =
∑
w∈Sn

∑
L

tL

L!

∑
(σa1 ,...,σaL )

a1 · · · aL

 · Tw,
where the innermost sum is over 0-Hecke words for w of length L. In view of Lemma 7.1, this means that

(34) G(1)
w (et − 1, . . . , et − 1) =

∑
L

tL

L!

∑
(σa1 ,...,σaL )

a1 · · · aL.

For positive integers x, note that (σa1 , . . . , σaL) is a 0-Hecke word for w if and only if (σx+a1 , . . . , σx+aL) is
a 0-Hecke word for 1x × w. Therefore, one similarly has

G
(1)
1x×w(et − 1, . . . , et − 1) =

∑
L

tL

L!

∑
(σa1 ,...,σaL )

(x+ a1) · · · (x+ aL).

Equivalently, using
[
tL

L!

]
f(t) to denote the coefficient of tL/L! in f(t), one has for any w ∈ Sn,

(35) FK(w,L) =

[
tL

L!

]
G

(1)
1x×w(et − 1, . . . , et − 1).

For w vexillary of shape λ, and ϕ = ϕ(w) + (N,N,N, . . .), replacing xi by −xi in Equation (23) gives

G
(1)

1N×w(x1, . . . , xN+n) =
∑
T

xT

where the sum runs over all column-strict set-valued tableaux T of shape λ which are flagged by ϕ. Substi-
tuting N = x and xi = et − 1 for all i, this shows that

G
(1)
1x×w(et − 1, . . . , et − 1) =

L∑
j=|λ|

(et − 1)j ·#SSYT(λ, ϕ, j)
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and hence Equation (35) becomes

FK(w,L) =

L∑
j=|λ|

[
tL

L!

]
(et − 1)j ·#SSYT(λ, ϕ, j).

Lastly, the well-known exponential generating function [St12, Equation (1.94b)] for Stirling numbers∑
L≥j

S(L, j)
tL

L!
=

(et − 1)j

j!

shows that
[
tL

L!

]
(et − 1)j = j!S(L, j), completing the proof. �

Remark 7.7. Since G
(1)
w0 = xn−11 xn−22 · · ·xn−1, the case w = w0 of Equation (34) gives∑

L

∑
(a1,...,aL)

a1 · · · aL
tL

L!
= (et − 1)(

n
2).

This formula was stated in [FK94, §3].
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