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1. Introduction

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) be a partition with n non-
negative parts. We identify it in the usual manner with its Fer-
rers/Young diagram, where the i-th row consists of λi boxes.
Consider a grid with n rows and m ≥ n+ λ1 − 1 columns. Place
λ in the northwest corner; this is the initial diagram for λ.
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For example, if λ = (4, 1, 1, 0), the initial diagram is the first
of the three below.
+ + + + · · ·
+ · · · · · ·
+ · · · · · ·
· · · · · · ·




+ + + · · · ·
+ · · · + · ·
· · · · · · ·
· + · · · · ·




+ · · · · · ·
+ · + + + · ·
· · · · · · ·
· + · · · · ·


A local move is a mutation of any 2× 2 subsquare of the form(

+ ·
· · 7→ · ·

· +

)
.

from successive applications of the local move to the initial di-
agram for λ. Above one sees two more of the many other plus
diagrams for λ = (4, 1, 1, 0).

Let Plus(λ) be the set of plus diagrams for λ. Given P ∈
Plus(λ), let wtx(P ) be the monomial xα1

1 x
α2
2 · · ·xαnn where αi is

the number of +’s in row i of P . A finer statistic is

wtx,y(P ) =
∏
(i,j)

xi − yj,

where the product is over all (i, j) such that there is a + in row i
and column j of P . For example, if P is the rightmost diagram
above, then

wtx(P ) = x1x
4
2x4 and

wtx,y(P ) = (x1 − y1)(x2 − y1)(x2 − y3)(x2 − y4)(x2 − y5)(x4 − y2).

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn+λ1−1} be two
collections of indeterminates. We consider two generating se-
ries, the second being a refinement of the first:

sλ(X) =
∑

P∈Plus(λ)

wtx(P ) and sλ(X;Y ) =
∑

P∈Plus(λ)

wtx,y(P ).

These are the Schur polynomial and factorial Schur polyno-
mial, respectively. A more standard description of these poly-
nomials involves semistandard Young tableaux, see, e.g., Mac-
donald (1992) and the references therein. The description above
arises in, e.g., Knutson et al. (2009).
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Let Sym[X] denote the ring of symmetric polynomials in X .
The set of Schur polynomials sλ(X) over partitions λ with at
most n, possibly empty, rows are a Z-linear basis of Sym[X].
Analogously, the factorial Schur polynomials form a Z[Y ]-linear
basis of Sym[X]⊗Q Z[Y ].

The structure constants with respect to these bases are de-
fined by

sλ(X)sµ(X) =
∑
ν

cνλ,µsν(X) and

sλ(X;Y )sµ(X;Y ) =
∑
ν

Cν
λ,µsν(X;Y ).

Here, cνλ,µ is the Littlewood-Richardson coefficient; this is known
to be a nonnegative integer. Following the terminology of Molev
(2009), the Littlewood-Richardson polynomial is Cν

λ,µ ∈ Z[Y ].
These latter coefficients generalize the former, i.e.,

cνλ,µ = Cν
λ,µ|y1=0,y2=0,...,yn+λ1−1=0.

In general, cνλ,µ = 0 unless |λ| + |µ| = |ν| whereas Cν
λ,µ = 0

unless |λ| + |µ| ≥ |ν|, where here |λ| =
∑

i λi. It is a theorem
of Graham (2001) that Cν

λ,µ is uniquely expressible as a poly-
nomial, with nonnegative integer coefficients in the variables
{βi := yi+1 − yi : i ≥ 1}.

For example, the interested reader may verify that

s(1,0)(x1, x2;Y )2 =s(2,0)(x1, x2;Y ) + s(1,1)(x1, x2;Y )

+(y3 − y2)s(1,0)(x1, x2;Y ).

De Loera & McAllister (2006) and Mulmuley et al. (2012) in-
dependently proved the vanishing problem for cνλ,µ has strongly
polynomial time complexity. The following result completes the
parallel above:

THEOREM 1.1. The vanishing of Cν
λ,µ can be decided in strongly

polynomial time.

In contrast, Narayanan (2006) has shown that computation of
cνλ,µ is a #P-complete problem in L. Valiant’s complexity theory
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for counting problems Valiant (1979). Now, cνλ,µ is a special case
of Cν

λ,µ of when |ν| = |λ| + |µ|. In this case, Cν
λ,µ|βi=1 = Cν

λ,µ.
Hence it follows that determining the value of Cν

λ,µ|βi=1 ∈ Z≥0 is
#P-hard. In particular, no polynomial time algorithm for either
counting problem can exist unless P = NP.
Overview of proof of Theorem 1.1. Our argument is a modification
of that used in De Loera & McAllister (2006); Mulmuley et al.
(2012). In Section 3, we construct, with explicit inequalities, a
polytope Pνλ,µ with the property that Pνλ,µ has a lattice point if
and only if Cν

λ,µ 6= 0. Now, if Pνλ,µ is nonempty, it has a ratio-
nal vertex. In that case, some dilation NPνλ,µ contains an integer
lattice point. Moreover, by our construction, NPνλ,µ = PNνNλ,Nµ,
which means CNν

Nλ,Nµ 6= 0. Thus, by a saturation theorem of An-
derson et al. (2013), we conclude

Cν
λ,µ 6= 0 ⇐⇒ CNν

Nλ,Nµ 6= 0 ⇐⇒ Pνλ,µ 6= ∅.

To determine if Pνλ,µ 6= ∅, one needs to ascertain feasibility of any
linear programming problem involving Pνλ,µ. The Klee-Minty
cube shows that the practically efficient simplex method has ex-
ponential worst-case complexity. Instead, one can appeal to el-
lipsoid/interior point methods for polynomiality. Better yet, our
inequalities are of the form Ax ≤ b where the entries of A are
from {−1, 0, 1} and the vector b is integral. Hence our polytope
is combinatorial and so one can achieve strongly polynomial time
complexity using É. Tardos’ algorithm; see Grotschel et al. (1993);
Tardos (1986). �

We point out some aspects of our modification. In De Lo-
era & McAllister (2006); Mulmuley et al. (2012) the authors use
the original saturation theorem of Knutson & Tao (2003). In ad-
dition, the polytope used has precisely cνλ,µ many lattice points.
Our polytope does not have any such exact counting feature. To
construct it, we need to deduce a new result about the edge-
labeled tableau rule of Thomas & Yong (2018). The remainder of
our argument is Proposition 3.2.

In recent years there has been significant work on the com-
plexity of computing Kronecker coefficients; see, e.g., Bürgisser
& Ikenmeyer (2008); Ikenmeyer et al. (2017); Pak & Panova (2017)
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and the references therein. In the context of the representation
theory of the symmetric group, these are an extension of the
Littlewood-Richardson coefficients. This paper initiates a study
of the analogous complexity issues in Schubert calculus, by in-
terpreting the Littlewood-Richardson coefficients as triple inter-
sections of Schubert varieties in the Grassmannian; see Section 4
for further discussion and open problems.

2. A factorial Littlewood-Richardson rule

Molev & Sagan (1999) gave the first combinatorial rule for Cν
λ,µ.

The first rule that exhibited the positivity of Graham (2001) was
found by Knutson & Tao (2003) in terms of puzzles. Later Kreiman
(2010) and Molev (2009) independently gave essentially equiva-
lent tableaux rules with the same positivity property. We also
mention Zinn-Justin (2009) which gives a quantum integrability
proof of the puzzle rule.

Actually, we will use yet another rule, due to Thomas & Yong
(2018). This is also the rule utilized in the proof of the saturation
theorem of Anderson et al. (2013) that we need. Indeed, we will
observe a new property of the rule that may be of some indepen-
dent interest.

2.1. The edge-labeled rule. We now recall the rule for Cν
λ,µ of

Thomas & Yong (2018).
Suppose λ ⊆ ν. An edge-labeled tableau T of skew shape

ν/λ and content µ is an assignment of µi many labels i to the
boxes of ν/λ and the horizontal edges weakly south of the “south-
ern border” of λ (thought of as a lattice path, in the usual way).
Each box contains exactly one label. Each edge contains a (pos-
sibly empty) set of labels. Moreover:

(i) the box labels weakly increase along rows;

(ii) the labels strictly increase along columns; and

(iii) no edge label k is too high, i.e., every edge label k must be
weakly below the southern edges of row k.
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We will refer to (i) and (ii) as semistandardness conditions.
A tableau is lattice if for each label k and column j, the num-

ber of k’s in column j and to the right is weakly greater than
the number of (k + 1)’s that appear in the same region. This can
be stated in terms of a column reading word wc(T ), obtained by
reading the columns top to bottom, right to left. When reading a
set-valued edge, read entries in increasing order.

We will also need the row reading word wr(T ). This is ob-
tained by reading the rows right to left and top to bottom, and
reading set-valued edges in increasing order.

We say a word is a lattice if for every t and label k, in reading
the first t letters, there are weakly more k’s than (k + 1)’s.

EXAMPLE 2.1. Consider the following tableaux with ν = (4, 2, 2)
and λ = (2, 2, 0):

T1 =
1 1

2 3
1 12

3

T2 =
1 2

2 3
3

1 12

T3 =
1 1

2 3

.23 2

1 12

3

♦

Then

wc(T1) = 1 1 1 2 3 1 2 3 wr(T1) = 1 1 1 2 1 3 2 3

wc(T2) = 2 1 1 2 3 1 2 3 wr(T2) = 2 1 1 2 1 3 2 3.

T1 and T2 are both edge-labeled tableaux; however only T1 is
lattice. Further, notice that both wc(T1) and wr(T1) are lattice,
whereas both wc(T2) and wr(T2) are not lattice. This is the point
of Theorem 2.3 below. In T3, the edge labels on the southern
border of the first row are too high. Therefore, while T3 is lattice,
it is not an edge-labeled tableau.

Let EdgeTabνλ,µ be the set of edge-labeled tableaux T such that
wc(T ) is lattice. The main theorem of Thomas & Yong (2018) is
that there is a weight apwt(T ) such that

Cν
λ,µ =

∑
T∈EdgeTabνλ,µ

apwt(T ).
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We do not actually need apwt(T ) in this paper, so we suppress
this detail. Instead, to discuss nonvanishing, we only need the
following immediate consequence:

PROPOSITION 2.2 (Anderson et al. 2013, Corollary 3.3). Cν
λ,µ = 0

if and only if EdgeTabνλ,µ = ∅.

2.2. Reading order independence. It is well-known to experts
in the theory of Young tableaux that “any reasonable reading
order works”. An instantiation of this imprecise statement is
that a (classical, i.e., non-edge-labeled) semistandard tableaux is
lattice for the column reading word (top to bottom, right to left)
if and only if it is lattice for the row reading word (right to left,
top to bottom).

The original formulation of the rule from Thomas & Yong
(2018) uses column reading order. However, since the saturation
property concerns stretching rows, we will need the following:

THEOREM 2.3. Let T be an edge-labeled tableau. Then wc(T ) is
lattice if and only if wr(T ) is lattice.

PROOF (Theorem 2.3). Let T be an edge-labeled tableau. Let

Ti,j = the label of the box in row i column j in matrix notation.

Similarly,

Ti+ 1
2
,j = the (set) filling of the southern edge of (i, j).

Accordingly, we let (x, y) denote either a box or edge position
of the tableau, i.e., (x, y) = (i, j) or (x, y) = (i+ 1

2
, j). Let

wr |(x,y) (T ) = the row reading word of T ending at (x, y), and

wc |(x,y) (T ) = the column reading word of T ending at (x, y).

EXAMPLE 2.4. Let T = T1 from Example 2.1. Then

wc |(2,1) (T ) = 1 1 1 2 3 wr |(2,1) (T ) = 1 1

wc |(2+ 1
2
,1) (T ) = 1 1 1 2 3 1 wr |(2+ 1

2
,1) (T ) = 1 1 1 2 1.

♦
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CLAIM 2.5.

(I) All labels weakly northeast of (x, y) are read by wr |(x,y) (T )
and wc |(x,y) (T ).

(II) If ` is read by wc |(x,y) (T ) but not wr |(x,y) (T ) then ` > Tx,y.

(III) If ` is read by wr |(x,y) (T ) but not wc |(x,y) (T ) then ` < Tx,y.

Proof (Claim 2.5): (I) is by definition. (II) and (III) follow since T
is semistandard. �

(⇒) Supposewc(T ) is lattice, butwr(T ) is not. Hence there ex-
ists a label k and position (x, y) such that wr |(x,y) contains more
(k+1)’s than k’s. We may assume without loss of generality that
(x, y) contains k+1. Then by (II) and (III) of the claim, the excess
of (k + 1)’s must be blamed on the region weakly northeast of
(x, y). However, (I) implies wc(T ) is not lattice, a contradiction.

(⇐) Conversely, suppose wr(T ) is lattice and wc(T ) is not.
Take a label k and position (x, y) such that wc|(x,y)(T ) contains
more (k + 1)’s than k’s. We may assume that if (x, y) is a box
position then Tx,y = k + 1 and if (x, y) is an edge position then
k + 1 ∈ Tx,y. Further, we may assume (x, y) is the first (topmost
and rightmost) position of such a failure.
Case 1: [(x, y) = (i, j) is a box] By (II), among the labels read by
wc |(i,j) (T ) but not wr |(i,j) (T ), no k or k + 1 appears. Therefore
since wc |(i,j) (T ) is not lattice, in the region read by both, there
are more (k + 1)’s than k’s. Since wr(T ) is lattice, in the region
only read by wr |(i,j) (T ), there must exist at least one k. Where
can such an additional k appear? By semistandardness, it must
be in row i − 1, strictly to the left of column j, as either a box
or edge label. Moreover, again by semistandardness, any such
extra k in column j′ < j must have a “paired” k + 1 in the box
(i, j′) below it. Hence, it follows that wr(T ) is also not lattice, a
contradiction.
Case 2: [(x, y) = (i+ 1

2
, j)] As in Case 1, there must exist an extra k

in the regionRweakly north of row i and strictly west of column
j. Now, if there is a box label k in R, then by semistandardness
we conclude Ti,j = k. This implies (x, y) is not the first violation
of latticeness for wc(T ).
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3. Proof of the main theorem

Suppose T ∈ EdgeTabνλ,µ. Let rik = rik(T ) denote the number of

k′s in the ith row of T and r
i+ 1

2
k = r

i+ 1
2

k (T ) the number of k’s in
the southern edges of the ith row of T , where

k ∈ {1, 2, . . . , l(µ)} and i ∈ {1, 2, . . . , l(ν)}.

Recall, l(µ) is the number of nonzero parts of µ, etc. By conven-
tion, let

ril(µ)+1 = r
l(ν)+1
k = 0.

EXAMPLE 3.1. For instance, consider

T =
1 1

2 3

.

3

1 2

Then

r21 = 2, r
2+ 1

2
1 = 1, r

2+ 1
2

2 = 1, r32 = 1, r33 = 1, r
3+ 1

2
3 = 1,

and all other values are zero. ♦

Next, examine the following conditions (which modify those
of a preprint version of Mulmuley et al. (2012)):

(A) Non-negativity: For all i, k,

rik ≥ 0, r
i+ 1

2
k ≥ 0.

(B) Shape constraints: For all i,

λi +
∑
k

rik = νi.

(C) Content constraints: For all k,∑
i

rik + r
i+ 1

2
k = µk.
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(D) Gap constraints: For all i, k,

r
i+ 1

2
k ≤

(
λi +

∑
k′<k

rik′
)
−
(
λi+1 +

∑
k′≤k

ri+1
k′

)
.

(E) Too high: For all i < k,

r
i+ 1

2
k = 0.

(F) Reverse lattice word constraints: For all i, k,∑
i′<i

ri
′

k + r
i′+ 1

2
k ≥ rik+1 +

∑
i′<i

ri
′

k+1 + r
i′+ 1

2
k+1 .

Define a polytope

Pνλ,µ = {(rik, r
i+ 1

2
k ) : (A)–(F)} ⊆ R2l(ν)l(µ).

PROPOSITION 3.2. EdgeTabνλ,µ 6= ∅ ⇐⇒ Pνλ,µ ∩ Z2l(ν)l(µ) 6= ∅.

PROOF (Proposition 3.2). (⇒) Let T ∈ EdgeTabνλ,µ. Clearly rik

and r
i+ 1

2
k satisfy (A), (B), (C), and (E) above. The tableau con-

straint (D) asks that there be enough edges in row i+ 1
2
, between

the rightmost k in row i + 1 and the leftmost k in row i, to ac-

commodate ri+
1
2

k many k’s; this holds by semistandardness of T .
Finally, (F) merely asks that the row word will be lattice after

reading all the (k + 1)’s in row i; this is certainly true of T as it is
row lattice.

(⇐) Let (rik, r
i+ 1

2
k ) ∈ Pνλ,µ ∩ Z2l(ν)l(µ). Construct a tableau T ? of

shape ν/λ and content µ as follows. First, for all i, k, (uniquely)
place rik many k’s in row i, such that the k’s are weakly increasing
along each row. At this point the tableau has no edge labels but,
by (B) has the correct skew shape ν/λ. Moreover, (A) and (D)
combined implies that for all i, k,

λi+1 +
∑
k′≤k

ri+1
k′ ≤ λi +

∑
k′<k

rik′ .
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This precisely asserts that the partially built T ? is column strict.

Next, place ri+
1
2

k many k’s as far to the right as possible in row
i+ 1

2
without breaking the semistandardness of T . To be precise,

the last k will be in column λi +
∑

k′<k r
i
k′ and the remaining k’s

will be in adjacent columns to the left, namely columns:(
λi +

∑
k′<k

rik′

)
− ri+

1
2

k + 1,

(
λi +

∑
k′<k

rik′

)
− ri+

1
2

k + 2,

. . . ,

(
λi +

∑
k′<k

rik′

)
− 1,λi +

∑
k′<k

rik′ .

(3.3)

This completes T ?.
(D) asserts that column strictness is preserved in the final step

where we have added the edges: We are placing the k’s in row
i+ 1

2
to the right of the box labels≤ k in row i+1. Also, in row i,

the columns (3.3) contain box labels < k. Now, (E) says no edge
label is too high.

However, (F) does not a priori show wr(T
?) is lattice (see Ex-

ample 3.6 below). Thus we need:

CLAIM 3.4. wr(T ?) is lattice.

Proof of claim: Consider row i = 1. In this case (F) asserts r1k+1 ≤ 0
for all k ≥ 1. In view of (A), this means that there are no labels
greater than 1 in the first row of T ?. Moreover, if we know row
latticeness has not failed before reading row i > 1 then (F) im-
mediately says no violation can occur in row i either.

Therefore, it remains to check that while reading the edge
labels in a row i+ 1

2
one always remains lattice. Suppose not. (F)

combined with (A) implies

(3.5)
∑
i′<i+1

ri
′

k + r
i′+ 1

2
k ≥

∑
i′<i+1

ri
′

k+1 + r
i′+ 1

2
k+1 .

That is, after reading the entirety of row i + 1
2
, the row reading

word has at least as many k’s as (k + 1)’s.
Say edge (i+ 1

2
, j) contains a violating label k + 1 that breaks

the latticeness of the row word. We may assume this k+1 is first
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(rightmost) among all such labels. By (3.5), and/or the sentence
immediately after it, there must be an “extra” edge label k in row
i+ 1

2
and in column j or to its left.

Case 1: [Ti,j < k] The rightmostness of the placement of the k’s
(see (3.3)) implies that k ∈ Ti+ 1

2
,j . Hence, the row word has more

(k+1)’s than k’s before reading edge (i+ 1
2
, j), a contradiction of

the rightmostness of k + 1. That is, this case cannot occur.
Case 2: [Ti,j = k] By semistandardness, for every k+1 in an edge
(i+ 1

2
, j′) with j′ ≥ j, there is k ∈ Ti,j′ . It is then straightforward to

conclude there are more (k+1)’s than k’s before reading the edge
(i + 1

2
, j), and in particular, before it even reads the rightmost k

in row i, a contradiction. �
This completes the proof of the proposition.

EXAMPLE 3.6. To illustrate the proof of (⇐) above, take λ =
(2, 2, 1, 1, 0), µ = (2, 2, 2, 1, 1), and ν = (2, 2, 2, 2, 2). Now, r31 =

r42 = r
4+ 1

2
1 = r

4+ 1
2

2 = r
5+ 1

2
4 = r

5+ 1
2

5 = 1 and r53 = 2 (all other com-
ponents are zero) defines a lattice point in Pνλ,µ. There are four
edge-labeled tableaux that have these statistics, namely

1

2

3 3
4 5

12

1

2

3 3
5 4

12

1

2

3 3
54

12

1

2

3 3

.

54

12

The first is not lattice, but the other three are. The rightmost of
them is T ?. ♦

Conclusion of proof (Theorem 1.1): Notice that since (A)–(F) is lin-
ear and homogeneous in the components of λ, µ and ν, it follows
that PNνNλ,Nµ = NPνλ,µ. Thus, in view of Proposition 3.2, we have
constructed the desired polytope Pνλ,µ alluded to in the introduc-
tion. Since this is the only missing component of the argument
given there, the theorem follows.

Using indicator variables, one easily modifies the above ar-
gument to construct a polytope Qνλ,µ whose lattice points are in
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bijection with the tableaux in EdgeTabνλ,µ. However this polytope
does not satisfy NQνλ,µ = QNνNλ,Nµ. Counting lattice points of this
polytope is not equivalent to computing Cν

λ,µ since one needs a
weighted count based on apwt.

4. Schubert calculus and complexity theory

The Littlewood-Richardson polynomials appear in the topic of
equivariant Schubert calculus of Grassmannians. The usage of
“equivariant” refers to “equivariant cohomology,” a type of en-
riched cohomology theory. We refer the reader to Knutson & Tao
(2003) for background.

Another enriched cohomology theory is K-theory (i.e., the
Grothendieck ring of algebraic vector bundles). There is a lattice
rule Buch (2002) for the corresponding K-theoretic Littlewood-
Richardson coefficients kνλ,µ (another lattice rule uses genomic tab-
leaux Pechenik & Yong (2017)).

QUESTION 4.1. Is the decision problem kνλ,µ = 0 in P?

One cannot use the same general method of this paper to re-
solve Question 1. To be precise, in (Buch 2002, Section 7) it is
noted that (up to a sign convention) k(2,1)(1,0),(1,0) = 1 but k(4,2)(2,0),(2,0) =

0. That is, the saturation statement

kνλ,µ 6= 0 =⇒ kNνNλ,Nµ 6= 0

is false (the truth of the converse is not known). Therefore, there
cannot exist a polytope Kνλ,µ with the dilation property NKνλ,µ =
KNνNλ,Nµ crucial for the argument we use.

Quantum cohomology of Grassmannians is another defor-
mation of significant interest. Work of Buch et al. (2016) estab-
lished a combinatorial rule for the coefficients dνλ,µ of this case.
They proved the two-step case of a puzzle conjecture of A. Knut-
son; see Buch et al. (2003). Also, Belkale (2008) has established
a quantum saturation property for these quantum Littlewood-
Richardson coefficients. However, even from these results a so-
lution to the following is not clear to us:
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QUESTION 4.2. Is the decision problem dνλ,µ = 0 in P?

The problems of computing kνλ,µ and dνλ,µ are #P-hard prob-
lems. This is because they contain as special cases the Littlewood-
Richardson coefficients, which are #P-complete by Narayanan
(2006). To show both problems are actually #P-complete, one
needs an argument to establish both problems are actually in
#P. This should be possible using one of the combinatorial rules
for each of the numbers; the technicalities of such an argument
(including recalling the rules) might appear elsewhere.

Finally, the Schur polynomials are special cases of Schubert
polynomials Sw(X), defined for any permutation w ∈ Sn. It is
known that Sw′ = Sw if w′ is the image of w under the natural
embedding of Sn ↪→ Sn+1. Therefore it is unambiguous to refer
to Sw for w ∈ S∞. These polynomials form a Z-linear basis of
the ring of polynomials Q[x1, x2, . . .]. The structure constants cwu,v
relative to this basis are known to be nonnegative for Schubert
calculus reasons. We refer to the book Manivel (2001) for back-
ground and references.

It is a longstanding open problem to find a combinatorial
rule for cwu,v. In particular, it is not known if the problem is
in #P. Since the Schubert structure constants also contain the
Littlewood-Richardson coefficients in a specific way, the afore-
mentioned theorem of H. Narayanan implies the problem is #P-
hard. I. Pak-A. Morales have informed us that they have a proof
that the problem is in GapP.

QUESTION 4.3. Is the decision problem cwu,v = 0 NP-hard?

Recently, it was shown that vanishing of Kronecker coeffi-
cients is NP-hard Ikenmeyer et al. (2017). This establishes a for-
mal difference in difficulty between the Kronecker coefficients
and the Littlewood-Richardson coefficients. Inspired by their
results, Question 3 asks if one can similarly establish a formal
complexity difference in Schubert calculus. On the other hand,
if either decision problem in Questions 1 or 2 is NP-hard, then
such a formal difference does not preclude existence of a gen-
eral combinatorial rule, as rules exist in both of these research
directions.
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