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ABSTRACT. For a finite Coxeter system and a subset of its diagram nodes, we define spher-
ical elements (a generalization of Coxeter elements). Conjecturally, for Weyl groups, spherical
elements index Schubert varieties in a flag manifold G/B that are spherical for the action
of a Levi subgroup. We evidence the conjecture, employing the combinatorics of Demazure
modules, and work of R. Avdeev–A. Petukhov, M. Can–R. Hodges, R. Hodges–V. Laksh-
mibai, P. Karuppuchamy, P. Magyar–J. Weyman–A. Zelevinsky, N. Perrin, J. Stembridge,
and B. Tenner. In type A, we establish connections with the key polynomials of A. Lascoux–
M.-P. Schützenberger, multiplicity-freeness, and split-symmetry in algebraic combinatorics.
Thereby, we invoke theorems of A. Kohnert, V. Reiner–M. Shimozono, and C. Ross–A. Yong.

1. INTRODUCTION

1.1. Main definition. Let (W,S) be a finite Coxeter system, where S = {s1, . . . , sr} are
minimal generators of the Coxeter group W . Biject [r] := {1, 2, . . . , r} with the nodes of
the Coxeter diagram G. To each I ∈ 2[r], let GI be the induced subdiagram of G. Suppose

(1) GI =
m⋃
z=1

C(z)

is the decomposition into connected components. Let w(z)
0 be the long element of the

parabolic subgroup WI(z) generated by I(z) = {sj : j ∈ C(z)}.
Every w ∈ W has a reduced expression w = si1 · · · sik where k = `(w) is the Coxeter length

of w. Let Red(w) := Red(W,S)(w) be the set of these expressions. The left descents of w are

J(w) = {j ∈ [r] : `(sjw) < `(w)}.

Definition 1.1 (I-spherical elements). Let w ∈ W and fix I ⊆ J(w). Then w is I-spherical
if there exists R = si1 · · · si`(w)

∈ Red(w) such that:

(S.1) #{t : it = j} ≤ 1 for all j ∈ [r]− I , and
(S.2) #{t : it ∈ C(z)} ≤ `(w

(z)
0 ) + #vertices(C(z)) for 1 ≤ z ≤ m.

Such an R is called an I-witness. Call w maximally spherical if it is J(w)-spherical.

Example 1.2 (Coxeter elements). A Coxeter element c of W is the product of all si’s (in some
order). Trivially, c is I-spherical for any I ⊆ J(c).

Example 1.3. The E8 Coxeter diagram is
1

2

3 4 5 6 7 8
. Let

R = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6 ∈ Red(w).

Date: December 2, 2021.

1



Then J(w) = {2, 3, 4, 5, 7, 8}. If I = J(w) then C(1) =
3 4

2

5

and C(2) =
7 8

.

HereWI(1) is theD4 Coxeter group andw(1)
0 = s3s2s4s3s2s4s5s4s3s2s4s5 with `(w(1)

0 ) = 12.
Also, WI(2) is the A2 Coxeter group S3, w(2)

0 = s7s8s7 and `(w
(2)
0 ) = 3.

R is not a J(w)-witness for w; it fails (S.1) as s6 appears thrice. However,

R = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s6s7s8s7s6

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s6s8s7s8s6

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s8s6s7s6s8

≡ s2s3s4s2s3s4s5s4s2s3s1s4s5s7s8s7s6s7s8.

The latter expression is a J(w)-witness.

Example 1.4 (B2, B3). For B2, all elements are J(w)-spherical (Proposition 2.8). For B3, the
diagram is

1 2 3
, and #W (B3) = 233! = 48. The 8 non-J(w)-spherical elements are:

s3s2s3s1s2s3, s2s3s2s1s2s3, s3s2s3s2s1s2s3, s3s2s3s1s2s3s2, s2s3s2s1s2s3s2, s3s2s3s2s1s2s3s2,
s2s3s2s1s2, s3s2s3s1s2s3s2s1.

Example 1.5 (F4). The F4 diagram is
1 2 3 4

. Of the 1152 Weyl group elements, 290 are

J(w)-spherical. An example is w = s4s3s4s2s3s4s2s3s2s1s2s3s4 (here J(w) = {2, 3, 4}). A
non-example is w′ = s2s1s4s3s2s1s3s2s4s3s2s1 (J(w′) = {2, 4}); here #Red(w′) = 29.

This paper will concentrate mainly on type An−1
1 2 n−1

. W (An−1) ∼= Sn, the

symmetric group on {1, 2, . . . , n}. Each si is identified with the transposition (i i+ 1).

Example 1.6. All w ∈ Sn are J(w)-spherical, if n ≤ 4. In S5 the non-examples are

24531, 25314, 25341, 34512, 34521, 35412, 35421, 42531, 45123, 45213, 45231,

45312, 52314, 52341, 53124, 53142, 53412, 53421, 54123, 54213, 54231.

There are 320 non-examples in S6, and 3450 in S7 (the latter computed by J. Hu). We
suspect that, for n large, nearly all w ∈ Sn are non-examples (Conjecture 3.8). Notice
24531−1 = 51423 is not on the list. Being maximally spherical is not inverse invariant.

Example 1.7 (321-avoiding permutations). w ∈ Sn is 321-avoiding if there does not exist
i < j < k such that w(i) > w(j) > w(k). Such w are fully commutative, i.e., no expression in
Red(w) contains sisi+1si nor si+1sisi+1. Any two elements of Red(w) can be obtained from
one another by a sequence of commutation relations sisj ≡ sjsi where |i − j| ≥ 2 (see, e.g.,
[M01, Proposition 2.2.15]). Hence, for any I ∈ 2J(w), the property of being an I-witness is
independent of the choice of si1 · · · si`(w)

∈ Red(w).

1.2. Spherical elements and Schubert geometry. Let G be a connected complex reduc-
tive algebraic group. Fix a choice of maximal torus T and Borel subgroup B in G with
root system Φ and decomposition into positive and negative roots Φ = Φ+ ∪ Φ−. Let ∆
be the base of the root system. The finite Coxeter group of interest is the Weyl group of
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G, namely W ∼= N(T )/T . Let rankss(G) be the semisimple rank of G. Then W is gener-
ated by r = rankss(G) many simple reflections S = {s1, . . . , sr}, where 1, 2, . . . , r is some
indexing of ∆.

This paper builds on and extends earlier work of, e.g., P. Magyar–J. Weyman–A. Zelevin-
sky [MWZ99], J. Stembridge [S03], P. Karuppuchamy [K13], as well as work of the first
author with V. Lakshmibai [HL18, HL18] and with M. Can [CH20]. It combines study of
two topics of combinatorial algebraic geometry:

(A) The generalized flag variety is G/B. The Schubert varieties are the B-orbit closures
Xw = BwB/B where w ∈ W . Schubert varieties are well-studied in algebraic
combinatorics, representation theory and algebraic geometry; see, e.g., [F97, BL00].

(B) A variety X is H-spherical for the action of a complex reductive algebraic group
H if X is normal and it contains a open dense orbit of a Borel subgroup of H .
Spherical varieties generalize toric varieties. Classifying spherical varieties is of
significant interest; see, e.g., [BLV86, L01], and the survey by N. Perrin [P14].

Foundational work from the 1980s, by C. DeConcini–V. Lakshmibai [DL81], as well as
S. Ramanan–A. Ramanathan [RR85], established that every Schubert variety is normal.
Thus to be within (B)’s scope, it remains to introduce a reductive group H acting on Xw

(H = B being invalid, as B is not reductive).
We study a natural choice of H acting on Xw. Recall, for any parabolic subgroup P of

G, the Levi decomposition is

(2) P = LnRu(P )

where L is a Levi subgroup of P and Ru(P ) is P ’s unipotent radical. For each I ∈ 2[r]

there is a standard parabolic PI ⊃ B; let LI be the associated standard Levi from (2) that
contains T . With respect to the left action of G on G/B,

(3) PJ(w) = stabG(Xw);

see [BL00, Lemma 8.2.3]. For any

I ⊆ J(w), LI ≤ PI ≤ PJ(w).

Hence by (3) each of the reductive groups H = LI acts on Xw.

Definition 1.8. Let I ⊆ J(w). Xw ⊆ G/B is LI-spherical if Xw has an open dense orbit
of a Borel subgroup of LI under left translations. Xw is maximally spherical if it is LJ(w)-
spherical.

Which Schubert varieties Xw are spherical for the action of LI?

Conjecture 1.9. Let I ⊆ J(w). Xw is LI-spherical if any only if w is I-spherical.

Condition (S.2) has the following Lie theoretic origin: ifG is semisimple andB is a Borel
subgroup, then dimB = `(w0) + rank(G). However, Conjecture 1.9 predicts that being LI-
spherical only depends on the Coxeter data. In particular, this suggests the sphericality
classification is the same for SO2n+1/B vs. Sp2n/B.

To summarize earlier work, it seems nontrivial to certify sphericality of Xw, even in
specific instances. A certificate that Xw is not I-spherical is implicit in [P14]. We expound
upon it using research from algebraic combinatorics (see Theorem 4.13).
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Example 1.10. M. Can and the first author [CH20, Theorems 6.2, 6.3] proved that all Schu-
bert varieties in SL3/B and SL4/B are maximally spherical. This is consistent with Exam-
ple 1.6. The methods of Section 4 allow one to verify that the non-spherical cases shown
in S5 (and those alluded to in S6) are indeed geometrically non-spherical.

Example 1.11 (Toric Schubert varieties). (S.1) was inspired by P. Karuppuchamy’s [K13].
In ibid., the author classified when Xw is toric with respect to T , that is, Xw contains a
dense orbit of T . Identically, this is classifying L∅-spherical Xw. Indeed when I = ∅, (S.2)
is a vacuous condition, and “Xw is toric ⇐⇒ (S.1)” is precisely his classification. Earlier,
B. Tenner [T07] proved (without reference to toric Schubert geometry) thatw satisfies (S.1)
if and only if w avoids 321 and 3412. See Theorem 4.12 and the discussion thereafter.

Recently, the first author and V. Lakshmibai [HL18] characterized spherical Schubert
varieties in the Grassmannian Grk(Cn). This implies some necessary conditions for a
Schubert variety in the flag variety to be spherical.

Since this work was submitted, Y. Gao and the authors have proved Conjecture 1.9 for
type A [GHY21].

1.3. Summary of the remainder of this paper. In Section 2, we describe some basic prop-
erties of Definition 1.1. These are used to confirm agreement of Conjecture 1.9 in other
examples, as well as with geometric properties of Definition 1.8. Our initial result is

(I) Theorem 2.4, a characterization of when w0 ∈ W is I-spherical. This is connected
to [MWZ99] and [S03], supplying some general-type evidence for Conjecture 1.9.

We characterize maximally spherical elements of dihedral groups (Proposition 2.8). This
result and (I) are used to prove:

(II) Conjecture 1.9 holds for rank two simple cases (Theorem 2.10).

In Section 3, we turn to G = GLn. We state

(III) Theorem 3.6, which confirms Conjecture 1.9 for the class of bigrassmannian permu-
tations introduced by A. Lascoux–M.-P. Schützenberger [LS96].

(IV) Conjecture 3.9, which suggests Definition 1.1 is a pattern avoidance property. (Since
this work was submitted, this has been proved by C. Gaetz [G21], using the afore-
mentioned results of [GHY21].)

Section 4 offers a novel perspective on the sphericality problem in terms of the alge-
braic framework of split-symmetric polynomial theory. The latter interpolates between
symmetric polynomial theory and asymmetric polynomial theory.1 Within this viewpoint,
we discuss a unified notion of multiplicity-free problems, and contribute to the subject of
key polynomials. We present

(V) Theorem 4.10, which characterizes multiplicity-free key polynomials. This sup-
ports some sphericality ideas we propose.

The proof of this result is found in the companion paper [HY20], where we also derive a
multiplicity-free result about the quasi-key polynomials of S. Assaf-D. Searles [AS18].

1Borrowing the terminology of [PS19].
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Using the fact that these polynomials are characters of Demazure modules, as well as a
result of N. Perrin [P14], we derive:

(VI) Theorem 4.13, which translates the geometric sphericality problem to one about
split multiplicity-freeness of infinitely many key polynomials.

A consequence of (VI) is

(VII) Theorem 4.16, which gives sufficient conditions, close to those of (V), for a key
polynomial to be split multiplicity-free. In comparison to [HY20], the geometric
and representation-theoretic input of (VI) allows for a relatively short proof.

Although (V) does not give, per se, an algorithm to decide sphericality, we suggest

(VIII) Conjecture 4.19, which asserts that checking the “staircase” key polynomial suf-
fices. This conjecture reduces to a combinatorial question about the split symme-
try of key polynomials; see Conjecture 4.20, Conjecture 4.21 and Proposition 4.23.
(V) is a solution of this problem in the “most-split” case.

We exhaustively verified that Conjecture 1.9 is mutually consistent with Conjecture 4.19
for n ≤ 6 (and many larger cases).

Section 5 is the culmination of the methods developed. We prove Theorem 3.6 about bi-
grassmannian permutations. The argument uses Theorem 4.13, a combinatorial formula
for splitting key polynomials due to C. Ross and the second author [RY15], as well as an
algebraic groups argument (Proposition 2.19).

2. BASIC PROPERTIES AND MORE EXAMPLES

Let ≤ denote the (strong) Bruhat order on W . The following is a standard result (see,
e.g., [BB05, Theorem 2.2.2]):

Theorem 2.1 (Subword property). Fix si1si2 · · · si`(v) ∈ Red(v). u ≤ v if and only if there
exists 1 ≤ j1 < j2 < . . . < j`(u) such that sij1sij2 · · · sij`(u) ∈ Red(u).

Proposition 2.2. Suppose v ∈ W and I ⊆ J(v). If there exists u ∈ W such that u ≤ v, and
every element of Red(u) fails (S.1) or (S.2) (with respect to I , ignoring whether or not I ⊆ J(u)),
then v is not I-spherical.

Proof. Suppose v is I-spherical and R = si1 · · · si`(v) ∈ Red(v) is an I-witness. Then by
Theorem 2.1, some subexpression R′ of R is in Red(u). However, by hypothesis, R′ fails
(S.1) or (S.2) with respect to I . Hence so must R, a contradiction. �

If W is a Weyl group, Bruhat order is the inclusion order on Schubert varieties. That is,
Xu ⊆ Xv ⇐⇒ u ≤ v. In particular, Xw0 = G/B and Xid = B/B is the Schubert point. Both
of these Schubert varieties are maximally spherical. In the former case, H = G and in the
latter case H = T . This is consistent with:

Lemma 2.3. Both w = id, w0 are maximally spherical.

Proof. If w = id, (S.1) is trivial while (S.2) is vacuous (since J(w) = ∅). If w = w0 then (S.1)
is vacuous (since J(w) = [r]) while (S.2) is trivial. �
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Extending Lemma 2.3, we characterize I-sphericality of w0. This is a nontrivial confir-
mation of Conjecture 1.9.

Theorem 2.4 (The long element w0). Let n ≥ 4. Suppose I ⊆ [n − 1] then w0 ∈ Sn is
I-spherical if and only if I = [1, n− 1], I = [2, n− 1] or I = [1, n− 2].

If W is a finite, irreducible Weyl group not of type An−1, then w0 ∈ W is I-spherical if and only
if I = S.

Hence, Conjecture 1.9 holds for all Levi subgroup actions on G/B (where G is simple).

Proof. We first prove the type An−1 statement.
(⇒) (By contrapositive) Assume I is not one of the three listed cases.

First suppose there exists 2 ≤ j ≤ n − 2 such that j 6∈ I . For 1 ≤ i ≤ n − 3, let w〈i〉0 =

sisi+1si+2sisi+1si ∈ Sn. So w〈1〉0 = 4 3 2 1 5 6 . . . n−2 n−1 n, w〈2〉0 = 1 5 4 3 2 6 7 . . . n−1 n,
etc. That is, each is a “shifted copy” of 4321 ∈ S4. If n = 4 one checks directly that
s2 appears twice in any reduced word for w0 (there are sixteen such words). It follows
that every R ∈ Red(w

〈j−1〉
0 ) contains sj twice. Thus R fails (S.1) with respect to I . Since

w
〈j−1〉
0 ≤ w0, we may apply Proposition 2.2 to conclude w0 is not I-spherical.
The remaining possibility is that I = [2, n − 2]. Consider Rc = s1s2 · · · sn−1 ∈ Red(c),

the unique reduced expression for the Coxeter element c. Since c ≤ w0, by Theorem 2.1,
for any Rw0 ∈ Red(w0), Rc appears as a subexpression of Rw0 . In particular, there is an
s1 to the left of sn−1 in Rw0 . Now, if Rc′ = sn−1sn−2 · · · s2s1 ∈ Red(c′) then by the same
reasoning there is an sn−1 left of s1 in Rw0 . Hence either s1 appears at least twice or sn−1
appears at least twice in Rw0 . Therefore Rw0 cannot be an I-witness, as it fails (S.1). Thus
w0 cannot be I-spherical.

(⇐) When I = [n − 1] = J(w0), we apply Lemma 2.3. Next we prove w0 is I-spherical
for I = [1, n− 2] (the remaining case is similar). The reduced expression

(s1s2 · · · sn−1)(s1s2 · · · sn−2) · · · (s1s2 · · · sj) · · · (s1) ∈ Red(w0)

uses sn−1 exactly once, and so (S.1) holds. Here GI is the An−2 Dynkin diagram. Now (S.2)
requires that

(
n
2

)
− 1 ≤

(
n−1
2

)
+ n− 2; in fact this holds with equality.

The argument for other types follows from a proof of K. Fan [F11] posted in answer to
a question asked on MathOverflow by J. Humphreys. For the sake of completeness we
explicate his argument below. Let ∆ = {α1, . . . , αr} be the simple roots.

Claim 2.5. Let I = [r] − {d} and α ∈ Φ+ with α =
∑r

i=1 aiαi. Suppose w0 = w1sdw2 for
w1, w2 ∈ WI . Then w1sdw2 is a reduced product, i.e., `(w1sdw2) = `(w1) + `(sd) + `(w2).
Further, if ad > 0 and w0(α) = −α, then w2(α) = αd and sdw2(α) = −αd.

Proof. We first show that w1sdw2 is a reduced product. Since w2 ∈ WI , sdw2 is a reduced
product. There exists a reduced expression R = si1 · · · sin where n = `(w0) − `(sdw2) =
`(w0) − `(w2) − 1 such that w0 = si1 · · · sinsdw2. Since we assumed w0 = w1sdw2, we
conclude that in fact R ∈ Red(w1). Finally `(w0) = `(w1sdw2) = n + 1 + `(w2) = `(w1) +
`(sd) + `(w2), as desired.

Let β be a root. By definition,

(4) si(β) = β − 2
(αi, β)

(αi, αi)
αi
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where (·, ·) is the Euclidean inner product on V = span(Φ). Pick si′1 · · · si′`(w2)
∈ Red(w2).

Let α[0] := α and α[f ] the result of applying the rightmost f -many reflections of

R′ = (si1 · · · sin)sd(si′1 · · · si′`(w2)
) ∈ Red(w0)

to α from right to left (e.g., α[1] = si′
`(w2)

α and α[2] = si′
`(w2)−1

si`(w2)
α, etc.). α[f ] ∈ Φ since it is

a basic root-system fact that each reflection permutes Φ.

Let a[f ]i be the coefficient of αi in α[f ]. By (4), if sj is the f -th generator of R′ from the
right, then

(5) a
[f ]
i = a

[f−1]
i for i ∈ [r]− {j}.

Since sd appears exactly once in R′, by (5), the coefficient of αd changes exactly once,
and exactly at the step f = `(w2) + 1. This implies that first, a[f−1]d = ad > 0 and thus
α[`(w2)] ∈ Φ+. Second, since w0(α) = −α, it implies a[f ]d = −ad < 0. However, since
a
[f ]
i = a

[f−1]
i ≥ 0 for i 6= d, α[`(w2)+1] ∈ Φ is possible if and only if ai = 0 for i 6= d and ad = 1

(recall, adαd ∈ Φ if and only if ad = ±1, by the axioms of root systems). Hence w2(α) = αd
and sdw2(α) = −αd. �

Claim 2.6. Suppose W is a finite, irreducible Weyl group, not type A. Define I = [r]−{d}. Then
w0 6= w1sdw2 with w1, w2 ∈ WI .

Proof. Suppose otherwise. Let γ =
∑r

i=1 αi ∈ Φ+ and let θ be the highest root in Φ+.
Outside of type A, γ 6= θ [H90, Section 4.9, Table 1]. In the case of the exceptional groups,
one checks by direct computation that w0(γ) = −γ and w0(θ) = −θ. In types Bn and Cn,
as well as Dn for even n, w0(α) = −α for all roots α [B02, Chap. VI, §4 no. 5,6,8]. In type
Dn for odd n, w0 corresponds to the automorphism of the roots which interchanges αr
and αr−1, and then negates the result [B02, Chap. VI, §4 no. 8]. Hence, w0(γ) = −γ and
w0(θ) = −θ. Thus in all cases, γ and θ both satisfy the hypotheses of Claim 2.5. That claim
says that w2(γ) = w2(θ) = αd. Hence w0(γ) = w0(θ), which is impossible. �

Concluding, if I ( [r], there exists a d ∈ [r]− I . By Claim 2.6, w0 fails (S.1) for d.
In [AP14, Lemma 5.4], R. S. Avdeev and A. V. Petukhov show that G/PJ is LI-spherical

if and only if G/PI × G/PJ is G-spherical (where the latter action is the diagonal G-
action). These diagonal spherical actions are classified in type A by P. Magyar-J. Weyman-
A. Zelevinsky [MWZ99]. In particular, [MWZ99, Theorem 2.4] shows that SLn/B is LI-
spherical only for the I in the statement of the theorem. The diagonal spherical actions in
all other types were given by J. Stembridge in [S01, S03], whose work implies that if G is
simple and not of type A, then the only Levi that acts spherically on G/B is G. �

In our proof of Theorem 3.6 we will need the notions from this next example:

Example 2.7 (The canonical reduced expression). The diagram D(w) of w ∈ Sn is the
subset of [n]× [n] given by

(6) D(w) = {(i, j) ∈ [n]2 : j < w(i), i < w−1(j)}
(in matrix coordinates). Fill the boxes of row i from left to right by si, si+1, si+2, . . .. Define
Rcanonical(w) to be the canonical reduced expression for w obtained by reading this filling
from right to left along rows and from top to bottom. In S4, w is maximally spherical if
and only if Rcanonical(w) is a J(w)-witness for w, unless w = 3421, 4213, 4231. For instance
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Rcanonical(3421) = s2s1s3s2s3 fails (S.1) when I = J(3421) = {1, 2}. HoweverR = s1s2s1s3s2
is a {1, 2}-witness in this case.

Proposition 2.8 (Dihedral groups). In type I2(n) and n ≥ 2 (whereW is the the dihedral group
of order 2n), w ∈ W is maximally spherical if and only if `(w) ≤ 3 or w = w0.

Proof. The Coxeter diagram is n . W is generated by S = {s1, s2} with the relations
s21 = s22 = id and (s1s2)

n = id. Each element of W has a unique reduced word, except w0.
Now id, w0 are maximally spherical by Lemma 2.3. Thus suppose w 6= id, w0. If w = s2 · · ·
then J(w) = {2}. If `(w) ≤ 3 then w = s2, s2s1 or s2s1s2, and it contains at most one s1, and
hence (S.1) is satisfied. (S.2) says there are at most two s2 in the reduced word of w, which
is true. Thus w is J(w)-spherical. However, if 4 ≤ `(w) < n then w = s2s1s2s1 · · · and w
contains at least two s1’s, violating (S.1). Thus such w are not J(w)-spherical. Similarly,
one argues the cases where w = s1 · · · . �

Corollary 2.9. Conjecture 1.9 holds for types B2 and G2.

Proof. First let us assume I = J(w). The associated Coxeter groups are dihedral, and
hence Proposition 2.8 applies. In type B2 (

1 2
) that proposition states that all w ∈ W are

maximal-spherical. In type G2
1 2

, it says that only id, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, w0

are maximal-spherical. This agrees with the geometric findings of M. Can and the first
author [CH20, Sections 7,8].

Thus we may assume I ( J(w). If #I = 1 and I ( {1, 2} then w = w0. In B2,
w0 = s1s2s1s2 ∈ W (B2) fails (S.2) and is not I-spherical. This agrees with Theorem 2.4.
Similarly we handle G2. Finally, if I = ∅, we may appeal to the toric classification of
P. Karuppuchamy (see Example 1.11). �

Theorem 2.10 (Rank two). Conjecture 1.9 holds for G/B where G is simple of rank two.

Proof. The B2 and G2 cases are covered by Corollary 2.9.
For the root system A2, first suppose I = J(w). All elements of S3 are maximally

spherical (see Example 1.6). Now we apply the results of M. Can and the first author
(Example 1.10). If #I = 1 and I ( J(w) then w = w0 and w = s1s2s1 ≡ s2s1s2 is I-
spherical. This agrees with [MWZ99]. Finally if I = ∅ then we use the toric classification
of P. Karuppuchamy (see Example 1.11). �

We now record facts that infer one kind of sphericality from another. Consistency be-
tween the combinatorial predictions and the geometry are checked.

Proposition 2.11. Fix x, y ∈ W with x ≤ y and I ⊆ J(x) ∩ J(y). If y is I-spherical, then x is
I-spherical.

Proof. The contrapositive claim is Proposition 2.2. �

Proposition 2.11 is consistent with geometry. A normal H-variety Y is H-spherical if
and only if there are finitely manyBH-orbits in Y (hereBH is a Borel subgroup ofH) [P14,
Theorem 2.1.2]. Now, suppose X is a subvariety of Y , where Y is H-spherical and X is
H-stable. Then Y must have finitely many BH-orbits, which implies X must have finitely
many BH orbits. Hence, X is H-spherical as well. In our case, if x ≤ y and I ⊆ J(x)∩J(y)
then H = LI acts on X = Xx and Y = Xy.
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Proposition 2.12 (Monotonicity). Let w ∈ W and suppose I ′ ⊂ I ⊆ J(w). If w is I ′-spherical
then it is I-spherical.

Proof. Suppose R = sr1 · · · sr`(w)
∈ Red(w) is an I ′-witness. We show R is an I-witness.

Trivially, R satisfies (S.1) with respect to I . Let

GI′ =
m′⋃
z′=1

C(z
′)

and GI =
m⋃
z=1

C(z)

be the decomposition (1) for I ′ and I , respectively. Suppose z ∈ [m] is such that

(7) #{it : it ∈ C(z)} > `(w
(z)
0 ) + #vertices(C(z)).

Let z′1, z′2, . . . , z′s ∈ [m′] be such that C(z
′
j) ⊆ C(z). Let w

(z′j)

0 be the longest element of the
Coxeter groupW (C(z

′
j)) associated to C(z

′
j), for 1 ≤ j ≤ s. Now, eachW (C(z

′
j)) is a parabolic

subgroup of W (C(z)) and
s∏
j=1

w
(z′j)

0 ≤ w
(z)
0 .

Thus,
∑s

j=1 `(w
(z′j)

0 ) ≤ `(w
(z)
0 ), and hence

(8)
s∑
j=1

(
`(w

(z′j)

0 ) + #vertices(C(z
′
j))
)
< `(w

(z)
0 ) + #vertices(C(z)),

Combining (7), (8) and the pigeonhole principle implies (S.2), with respect to I ′, fails for
some z′j , a contradiction. Thus R satisfies (S.2) with respect to I , and therefore R is an
I-witness. �

Proposition 2.12 is consistent with the following (known) fact:

Proposition 2.13 (Geometric monotonicity). Suppose w ∈ W and I ′ ⊆ I ⊆ J(w). If Xw is
LI′-spherical, then Xw is LI-spherical.

Proof. Any Borel subgroup in LI′ is of the form BI′ := LI′ ∩B for some Borel subgroup B
of G. Then BI′ ⊆ BI := LI ∩B. Clearly if BI′ has an open dense orbit in Xw, then BI must
have an open dense orbit in Xw. Thus if Xw is LI′-spherical, then Xw is LI-spherical. �

Remark 2.14. An anonymous referee points out to us that, in view of Proposition 2.13,
the terminology we use of Xw being “maximally spherical” if it is LJ(w) spherical is, in a
sense, backwards. By Proposition 2.13, Xw being LJ(w)-spherical is a necessary condition
for it to be LI-spherical for any I ( J(w). Hence, LJ(w)-spherical is “least spherical”, and
the “most spherical” are those that are L∅-spherical since they are LI′-spherical for any
I ′ ⊆ J(w). Due to Proposition 2.12, a similar remark applies to our notion of w being
“maximally spherical”.

Proposition 2.15. Suppose X, Y ⊆ [r] where [sx, sy] = id for all x ∈ X, y ∈ Y . Let w = uv
where u ∈ WX and v ∈ WY . If I ⊆ J(w) then w is an I-spherical element of W if and only if u is
an (I ∩X)-spherical element of WX and v is an (I ∩ Y )-spherical element of WY .

Proof. This follows since J(u) = J(w)∩X and J(v) = J(w)∩Y , and since any component
of GI is a component of the induced subdiagram of GX on the nodes I ∩X or the induced
subdiagram of GY on the nodes I ∩ Y . �
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s1s2s3s1s4s3s1 s1s2s3s1s2s4s3s1 s1s3s1s2s3s4s3s1
s1s2s3s1s2s3s4s3s1 s1s2s3s1s4s3s1s2 s2s3s1s2s4s3s1s2
s1s2s3s1s2s4s3s1s2 s2s3s2s4s3s1s2 s1s3s1s2s3s4s3s1s2
s2s3s1s2s3s4s3s1s2 s1s2s3s1s2s3s4s3s1s2 s2s3s1s2s4s3s2
s1s2s3s1s2s4s3s2 s2s3s2s4s3s2 s1s3s1s2s3s4s3s2
s2s3s1s2s3s4s3s2 s1s2s3s1s2s3s4s3s2 s1s2s3s1s4s3s1s2s3
s1s3s1s2s4s3s1s2s3 s2s3s1s2s4s3s1s2s3 s1s2s3s1s2s4s3s1s2s3
s3s2s4s3s1s2s3 s2s3s2s4s3s1s2s3 s3s1s2s3s4s3s1s2s3
s1s3s1s2s3s4s3s1s2s3 s2s3s1s2s3s4s3s1s2s3 s1s2s3s1s2s3s4s3s1s2s3
s1s3s1s2s3s4s3 s1s2s3s1s4s3s1s2s3s4 s1s3s1s2s4s3s1s2s3s4
s2s3s1s2s4s3s1s2s3s4 s1s2s3s1s2s4s3s1s2s3s4 s3s2s4s3s1s2s3s4
s2s3s2s4s3s1s2s3s4 s3s1s2s3s4s3s1s2s3s4 s1s3s1s2s3s4s3s1s2s3s4
s2s3s1s2s3s4s3s1s2s3s4 s1s2s3s1s2s3s4s3s1s2s3s4

TABLE 1. Non J(w)-spherical elements of D4

Suppose D,D′ are two Coxeter diagrams and φ : D ↪→ D′ is an embedding of Cox-
eter diagrams (preserving edge multiplicities). Then φ induces an embedding of Coxeter
groups (WD, SD) ↪→ (WD′ , SD′), their labellings [rD] ↪→ [rD′ ], and root systems (ΦD,∆D) ↪→
(ΦD′ ,∆D′). Abusing notation, we use φ to indicate all of these injections.

Proposition 2.16 (Diagram embedding). If w ∈ WD is I-spherical for I ⊆ J(w) then φ(w) ∈
WD′ is φ(I)-spherical.

Proof. SupposeR = si1 · · · si`(w)
∈ Red(WD,SD)(w) is an I-witness. We may suppose that the

φ sendsD to the nodes ofD′ labelled by 1′, 2′, . . . , r′D. Then si′1 · · · si′`(w)
∈ Red(WD′ ,SD′ )

(φ(w))

and clearly
φ(I) ⊆ φ(J(w)) = J(φ(w))

(thus it make sense to ask if φ(w) is φ(I)-spherical). Since φ([rD] − I) = {1′, 2′, . . . , r′D} −
φ(I), (S.1) holds for φ(I). Now (S.2) holds since GI ∼= Gφ(I) (Coxeter diagram isomor-
phism). �

Example 2.17 (D4). Of the 234! = 192 many elements of the Weyl group of type
1 3

2

4

,

the 38 that are not J(w)-spherical are given in Table 1. One can check that the list is
consistent with Propositions 2.15 and 2.16. For instance, from Example 1.6, all elements of
the Weyl groups for A1, A2, and A3 are maximally spherical. This combined with the two
propositions says that any w ∈ W (D4) that is in a (strict) parabolic subgroup is spherical.
That is why all of the words in the table use the entirety of S.

Proposition 2.16 is consistent with Conjecture 1.9. In our proof of Theorem 3.6, we
will require the geometric version of Proposition 2.16 for the general linear group; this is
Proposition 2.19 which we prepare for now. The result holds for reductive groups in other
types. We omit the general proof as the algebraic groups setup required is substantial.

Let n, f,N ∈ Z>0 be such that n + f ≤ N . We now define maps between the root
systems, Weyl groups, and labelings of GLn and GLN . Let Tn and TN be the subspaces of
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diagonal matrices in GLn and GLN , respectively.

(9) Φn ↪→ ΦN Wn ↪→ WN [n− 1] ↪→ [N − 1]
αi 7→ αf+i si 7→ sf+i i 7→ f + i

Abusing notation, we use ι to indicate all of these maps. Let h : GLn ↪→ GLN be given by

(10) g 7→

Idf g
IdN−n−f

 ,
where Idk is the k × k identity matrix. The map h is compatible with the maps ι. That is,

(11) h(w) = ι(w) for w ∈ Wn;

here we abuse notation and write h(w) to mean the image, under h, of a coset representa-
tive ofw inN(Tn) is equal to a coset representative of ι(w) inN(TN). Further, h(Uα) = Uι(α)
where Uα is the root subgroup of α ∈ Φn. Since h(Bn) ⊆ BN , h descends to an injective map

(12) h : GLn/Bn ↪→ GLN/BN .

We now prove a lemma inspired by E. Richmond and W. Slofstra’s [RS16, Lemma 4.8].

Lemma 2.18. The map h : GLn/Bn ↪→ GLN/BN induces a LJ(w)-equivariant isomorphism
XwBn ↪→ Xι(w)BN

for all w ∈ Wn (the action of LJ(w) on the right hand side is h(LJ(w))).

Proof. That h : XwBn ↪→ Xι(w)BN
follows from (11) and the Bruhat decomposition. Thus,

since Xι(w)BN
is normal, to show that XwBn ↪→ Xι(w)BN

is an isomorphism we need only
show surjectivity (by Zariski’s Main Theorem).

Let K = {f + 1, . . . , f + n − 1}. The parabolic PK = LKUK , where UK = Ru(PK) is the
unipotent radical of PK . Let BK := LK ∩ BN be a Borel subgroup of LK . From, e.g., the
proof of [RS16, Lemma 4.8], we recall that

(13) BN = BKUK ,

and that UK is stable under conjugation by any v ∈ (WN)K (parabolic subgroup), and in
particular

(14) v−1UKvBN = BN .

An element b ∈ BK has the form r s
t

 ,
where r ∈ Tf , s ∈ Bn, and t ∈ TN−n−f (where Tk denotes the subspace of diagonal matrices
in GLk). Thus for any such b, there exists a

tb =

r−1 Idn
t−1

 ∈ H :=


A Idn

C

 : A ∈ Tf , B ∈ TN−n−f


such that
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btb =

Idf s
IdN−n−f

 = h(s).

This allows us to conclude that

(15) h(Bn)H = BK .

Also, notice that

(16) Hv = vH for v ∈ (WN)K .

Consider the Schubert cell of v ∈ (WN)K . We have v = ι(w) for some w ∈ Wn.

BNvBN/BN = BKUKvBN/BN (13)
= BK(vv−1)UKvBN/BN

= BKvBN/BN (14)
= h(Bn)HvBN/BN (15)
= h(Bn)vBN/BN (16) and H ⊆ B
= h(Bn)ι(w)BN/BN

= h(Bnw)BN/BN (11)
= h(BnwBn/Bn) (12)

Thus h induces a surjection from the Schubert cell of w ∈ Wn onto the Schubert cell of
ι(w) = v. Since the same holds for all u = ι(w′) ≤ ι(w) = v ∈ (WN)K , the Bruhat
decomposition implies XwBn ↪→ Xι(w)BN

is surjective.

The map h is GLn-equivariant (where the action on the right hand side is given by
h(GLn)). Thus LJ(w) ⊆ stabGLn(XwBn) implies h(LJ(w)) ⊆ stabGLN

(Xι(w)BN
). Thus the

isomorphism XwBn ↪→ Xι(w)BN
is LJ(w)-equivariant. �

Proposition 2.19 (Diagram embedding; geometric version). If XwBn ⊆ GLn/Bn is LI-
spherical for I ⊆ J(w), then Xι(w)BN

⊆ GLN/BN is Lι(I)-spherical.

Proof. Lemma 2.18 implies thatXwBn
∼= Xι(w)BN

asLJ(w)-varieties (and hence asLI-varieties
for I ⊆ J(w)). If I ⊆ [n− 1], then h(LI) ⊆ Lι(I). In particular, since ι(J(w)) = J(ι(w)), this
implies

h(LI) ⊆ Lι(I) ⊆ Lι(J(w)) = LJ(ι(w)) ⊆ stabGLN
(Xι(w)BN

).

We conclude that, if XwBn is LI-spherical, then Xι(w)BN
is LI-spherical, which in turn

implies Xι(w)BN
is Lι(I)-spherical. �

3. THE GENERAL LINEAR GROUP

In what remains, G = GLn. This is type An−1, hence S = {si = (i i+ 1) : 1 ≤ i ≤ n− 1}.
We express w ∈ W (An−1) ∼= Sn in one-line notation. Here,

(17) J(w) = {j ∈ [n− 1] : w−1(j) > w−1(j + 1)}
(j ∈ J(w) if j + 1 appears to the left of j in w’s one-line notation). Indeed, the description
(17) is saying the that left descents of w are the right descents of w−1. Let I ∈ 2J(w) and

D := [n− 1]− I = {d1 < d2 < d3 < . . . < dk}.
By convention, d0 := 0, dk+1 := n.
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Definition 3.1 (GLn-version of Definition 1.1). w ∈ Sn is I-spherical if R = si1si2 · · · si`(w)
∈

Red(w) exists such that

(S.1’) sdi appears at most once in R
(S.2’) #{m : dt−1 < im < dt} <

(
dt−dt−1+1

2

)
for 1 ≤ t ≤ k + 1.

w is maximally spherical if it is J(w)-spherical.

Clearly (S.1’) is the specialization of (S.1). For (S.2), the Coxeter graph induced by
the nodes of the An−1 diagram strictly between dt−1 and dt is type Adt−dt−1−1. In type
Adt−dt−1−1, `(w0) =

(
dt−dt−1

2

)
. Now `(w0) + (dt − dt−1 − 1) =

(
dt−dt−1+1

2

)
− 1, which agrees

with (S.2’), once one accounts for the strict inequality used.
Let T be invertible diagonal matrices and B be the invertible upper triangular matrices

in G = GLn. Hence G/B is the variety Flags(Cn) of complete flags of subspaces in Cn.
Here, LI is the Levi subgroup of invertible block matrices

(18) LI = GLd1−d0 ×GLd2−d1 × · · · ×GLdk−dk−1
×GLdk+1−dk .

Conjecture 3.2 (GLn-version of Conjecture 1.9). Let I ⊆ J(w). Xw is LI-spherical if and only
if w is I-spherical.

Example 3.3. Let w = 35246781 ∈ S8. Here J(w) = {1, 2, 4}. If I = J(w) then D =
{3, 5, 6, 7}. Now, R = s1s2s1s3s4s3s2s5s6s7 ∈ Red(w), but it fails (S.1’). Instead consider

R′ = s1s2s1s4s3s2s4s5s6s7 ∈ Red(w).

(S.1’) holds. To verify (S.2’) we check that

• 4 = #{m : 0 < rm < 3} <
(
3−0+1

2

)
= 6

• 2 = #{m : 3 < rm < 5} <
(
5−3+1

2

)
= 3

• 0 = #{m : 5 < rm < 6} <
(
6−5+1

2

)
= 1

• 0 = #{m : 6 < rm < 7} <
(
7−6+1

2

)
= 1

• 0 = #{m : 7 < rm < 8} <
(
8−7+1

2

)
= 1

Hence w is maximally spherical.

Example 3.4. Let n = 5, w = 24531. Here I = J(w) = {1, 3} and D = {2, 4}. Let R =
s3s1s2s3s4s3 ∈ Red(w). R satisfies (S.1’) but fails (S.2’) since #{m : 2 < im < 4} =(
4−2+1

2

)
= 3. One checks no expression in Red(w) is an I-witness. Hence Conjecture 3.2

predicts that X24531 is not LJ(w)-spherical. We will prove this is true in Example 4.18.

A permutation w ∈ Sn is bigrassmannian if both w and w−1 have a unique descent.
A. Lascoux-M.-P. Schützenberger [LS96] initiated the study of these permutations and
identified a number of their nice (Bruhat) order-theoretic properties.2 The code of w ∈ Sn,

code(w) = (c1, c2, . . . , cn),

is defined by letting ci be the number of boxes in the i-th row of D(w) (as defined in (6)).
In fact, w is bigrassmannian if and only if its diagram consists of an b× a rectangle. More
precisely, code(w) = (0f , ab, 0g) where f + b+ g = n.

For later reference, we record a simple (and well-known) observation:

2For example, w ∈ Sn is bigrassmannian if and only if it is join-irreducible.
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Lemma 3.5. If w is bigrassmannian with code(w) = (0f , ab, 0g) where f + b + g = n, then the
unique descent of w is at position f + b, the unique descent of w−1 is at f + a, and in particular
J(w) = {f + a}. Moreover, f + a+ 1 appears left of f + a in w’s one-line notation.

Proof. The first sentence follows from elementary considerations about D(w) (defined in
(6)); see [M01, Section 2.1] and more specifically [M01, Proposition 2.1.2]. The second
sentence is the parenthetical immediately after (17), for the case at hand. �

Theorem 3.6. Let w ∈ Sn be bigrassmannian. Conjecture 3.2 holds for I = J(w). Moreover, w
is J(w)-spherical if and only if

(19) code(w) ∈ {(0f , a, 0g), (0f , 1b, 0g), (0f , 22, 0g)}.

When w is bigrassmannian, #J(w) = 1. Thus, the remaining bigrassmannian case of
Conjecture 1.9 (equivalently, Conjecture 3.2) not covered in the statement of Theorem 3.6
is I = ∅. However, that case is covered by the toric classification of P. Karuppuchamy (see
Example 1.11). We will delay the proof of Theorem 3.6 until Section 5, after building up
the framework used for the proof.

Example 3.7. A permutation w ∈ Sn is dominant if code(w) is a partition. For n = 5, the
codes of the non J(w)-spherical dominant permutations are:

(2, 2, 2, 0, 0), (2, 2, 2, 1, 0), (3, 3, 0, 0, 0), (3, 3, 1, 0, 0), (3, 3, 1, 1, 0)

(3, 3, 2, 0, 0), (4, 1, 1, 0, 0), (4, 1, 1, 1, 0), (4, 2, 0, 0, 0), (4, 2, 2, 0, 0)

(4, 2, 2, 1, 0), (4, 3, 0, 0, 0), (4, 3, 1, 0, 0), (4, 3, 1, 1, 0)

What is the general classification of these partitions? In M. Develin-J. Martin-V. Reiner’s
[DMR07], the associated Xw are called Ding’s Schubert varieties (in reference to K. Ding’s
[D97]). Hence we are asking which of Ding’s Schubert varieties are LJ(w)-spherical (and
more generally, one can ask which of these Schubert varieties are LI-spherical).

We expect that Schubert varietiesXw are rarely LJ(w)-spherical. Theorem 3.6 gives some
concrete indication of this assertion. In view of Conjecture 3.2, we believe the following
enumerative assertion is true:

Conjecture 3.8. limn→∞#{w ∈ Sn : w is J(w)-spherical}/n!→ 0.3

(Conjecture 3.8 should also hold for other Weyl groups of classical type.)
Suppose u ∈ Sn and v ∈ SN . Let u ↪→ v denote a pattern embedding, i.e., there exists φ1 <

φ2 < . . . < φn such that v(φ1), . . . , v(φn) are in the same relative order as u(1), . . . , u(n).
One says v avoids u if no such embedding exists.

Conjecture 3.9 (Pattern avoidance). If u ∈ Sn is not J(u)-spherical and u ↪→ v ∈ SN

(N > n) then v ∈ SN is not J(v)-spherical. Moreover, the complete list of bad patterns are the
not maximally spherical elements of S5 (listed in Example 1.6).4

With the assistance of J. Hu, we verified that all bad cases in Sn for n ≤ 7 can be
blamed on the S5 patterns. It seems plausible to attack this problem by extending the
ideas in Section 5. We hope to return to this in future work.

3Since this work was submitted, Conjecture 3.8 has been proved in work of D. Brewster and the authors
[BHY20].

4As mentioned in the Introduction, Conjecture 3.9 has since been proved by C. Gaetz [G21].
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4. POLYNOMIALS

We formalize a “split-symmetry” framework on algebraic combinatorics of polynomi-
als in order to study the Levi sphericality problem.

4.1. Split-symmetry in algebraic combinatorics. Algebraic combinatorics has, at its core,
the study of elements/bases of the ring of symmetric polynomials Sym(n) (see, e.g., [S99,
Chapter 7]). Obversely, A. Lascoux–M.-P. Schützenberger introduced numerous asym-
metric families in the polynomial ring Pol(n); see, e.g., [L13, PS19] and the references
therein. We now discuss an interpolation between Sym(n) and Pol(n):

Definition 4.1 (Split-symmetry). Fix integers d0 := 0 < d1 < d2 < . . . < dk < dk+1 := n
with D := {d1, . . . , dk}. ΠD is the subring of Pol(n) consisting of polynomials separately
symmetric in Xi := {xdi−1+1, . . . , xdi} for 1 ≤ i ≤ k + 1. A polynomial is D-split-symmetric
if f ∈ ΠD.

Clearly,

Proposition 4.2. ΠD
∼= Sym(d1)⊗ Sym(d2 − d1)⊗ · · · ⊗ Sym(dk+1 − dk).

A partition of length n is a sequence λ = (λ1, . . . , λn) of non-negative integers with
λ1 ≥ · · · ≥ λn. Let Parn be the set of such partitions. The Schur polynomial is sλ =

∑
T x

T ,
where the sum is over semistandard Young tableaux of shape λ with entries from [n].
Here, xT :=

∏n
i=1 x

#i∈T
i . The set {sλ(x1, . . . , xn) : λ ∈ Parn} is a Z-linear basis of Sym(n).

Definition 4.3. The D-Schur polynomials are sλ1,...,λk := sλ1(X1)sλ2(X2) · · · sλk(Xk), where
(λ1, . . . , λk) ∈ ParD := Pard1−d0 × · · · × Pardk+1−dk .

By Proposition 4.2, and the basis property of (classical) Schur polynomials, we have

Corollary 4.4. {sλ1,...,λk : (λ1, . . . , λk) ∈ ParD} forms a basis of ΠD.

4.2. Key polynomials. The Demazure operator is

πj : Poln → Poln

f 7→ xjf − xj+1sjf

xj − xj+1

,

where sjf := f(x1, . . . , xj+1, xj, . . . , xn).
A weak composition of length n is a sequence α = (α1, . . . , αn) ∈ Zn≥0. Let Compn denote

the set of these weak compositions. Given α ∈ Compn, the key polynomial κα is

xα := xα1
1 · · ·xαn

n , if α is weakly decreasing.

Otherwise, set

(20) κα = πj(κα̂) where α̂ = (α1, . . . , αj+1, αj, . . . , αn) and αj+1 > αj .

The key polynomials for α ∈ Compn form a Z-basis of Z[x1, . . . , xn]; see work of V. Reiner–
M. Shimozono [RS95] (and references therein) for more on κα. Since it is known that the
πj operators satisfy the commutation relations πiπj = πjπi (for |i − j| > 1) and the braid
relations πiπi+1πi = πi+1πiπi+1 (for 1 ≤ i ≤ n− 1), the above recurrence is well-defined.

Define a descent of a composition α to be an index j where αj > αj+1. Let Compn(D) be
those α ∈ Compn with descents contained in D = {d1, . . . , dk}with d1 < . . . < dk.
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Although we will not need it in this paper, let us take this opportunity to prove:

Proposition 4.5. {κα : α ∈ Compn(D)} forms a Z-linear basis of ΠD.

Proof. If di ≤ j < di+1, then πj(κα) = πj(πj(κα̂)) = πj(κα̂) = κα (since it is also true that
π2
j = πj). Thus,

κα =
xjκα − xj+1sjκα

xj − xj+1

⇐⇒ (xj − xj+1)κα = xjκα − xj+1sjκα

⇐⇒ (κα − sjκα)xj+1 = 0

⇐⇒ κα = sjκα.

Hence κα ∈ ΠD. Suppose a nonzero g ∈ ΠD is given. By Corollary 4.4,

g =
∑

λ1,λ2,...,λk

cλ1,λ2,...,λksλ1,...,λk ,

where each cλ1,λ2,...,λk is a scalar and (λ1, λ2, . . . , λk) ∈ ParD.

Let λi be the parts of λi be written in non-decreasing order (i.e., a “reverse partition”).
Then let α = λ1, . . . , λk ∈ Compn be obtained as the concatenation of these reverse parti-
tions. Thus, α will have descents at positions contained in D. Hence, by the first para-
graph of this proof, κα ∈ ΠD. It is well-known, and not hard to show, that

(21) [xα]κα = 1

(this can be deduced from, e.g., Kohnert’s rule [K90]). Let ≺ be the reverse lexicographic
order on monomials. Among (λ1, . . . , λk) ∈ ParD such that cλ1,λ2,...,λk 6= 0, pick the unique
one such that α (as constructed above) is largest under ≺. Now, α is the largest (mono-
mial) exponent vector appearing in g under ≺. This follows by an easy induction. The
base case is that that µ is the ≺ largest exponent vector of sµ, which is well-known.

Hence in view of (21), g1 := g − cλ1,λ2,...,λkκα ∈ ΠD and the largest monomial appearing
in g1 is strictly smaller in ≺. Therefore we may repeat this argument with g1 to obtain g2
and so on. As this process eventually terminates with gr = 0. The result follows. �

Example 4.6. Let n = 4 and D = {2}, then

g = x1x
2
2x4 + x21x2x4 + x1x

2
2x3 + x21x2x3 + x21x

2
2 ∈ ΠD

= s(2,1),(1,0) + s(2,2),(0,0)

= κ1,2,0,1 + κ2,2,0,0.

Now, (1, 2, 0, 1), (2, 2, 0, 0) ∈ Compn(D), in agreement with Theorem 4.5.

Essentially the same argument for Proposition 4.5 establishes an analogous result for
Schubert and Grothendieck polynomials. Split-symmetry of these polynomials was stud-
ied in connection to degeneracy loci, in [BKTY04, BKTY05].

4.3. Split-symmetry and multiplicity-free problems. Consider two disparate notions of
multiplicity-freeness that have been studied in algebraic combinatorics:

(MF1) Suppose f ∈ Sym(n) and
f =

∑
λ∈Parn

cλsλ.
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Then f is multiplicity-free if cλ ∈ {0, 1} for all λ. J. Stembridge [S01] classified
multiplicity-freeness when f = sµsν . For more such classifications see, e.g., [B02,
TY10, G10, BvW13, BP14, BB17].

(MF2) Now let
f =

∑
α∈Compn

cαx
α ∈ Poln.

f is multiplicity-free if cα ∈ {0, 1} for all α. In recent work of A. Fink-K. Mészáros-
A. St. Dizier [FMS19], multiplicity-free Schubert polynomials are characterized.

We unify problems of type (MF1) and (MF2), as follows:

Definition 4.7 (D-multiplicity-freeness).

(22) f =
∑

(λ1,...,λk)∈ParD

cλ1,...,λksλ1,...,λk ∈ ΠD

is D-multiplicity-free if cλ1,...,λk ∈ {0, 1} for all (λ1, . . . , λk) ∈ ParD.

If D = ∅, Definition 4.7 is (MF1). When D = [n − 1], notice ParD = Compn and we
recover (MF2).

Definition 4.8 (Composition patterns). Let

Comp :=
∞⋃
n=1

Compn.

For α = (α1, . . . , α`), β = (β1, . . . , βk) ∈ Comp, α contains the composition pattern β if there
exists integers j1 < j2 < · · · < jk that satisfy:

• (αj1 , . . . , αjk) is order isomorphic to β (αjs ≤ αjt if and only if βs ≤ βt),
• |αjs − αjt | ≥ |βs − βt|.

The first condition is the naı̈ve notion of pattern containment, while the second allows for
minimum relative differences. If α does not contain β, then α avoids β. For S ⊂ Comp, α
avoids S if α avoids all the compositions in S.

Example 4.9. The composition (3, 1, 4, 2, 2) contains (0, 1, 1). It avoids (0, 2, 2).

Define
KM = {(0, 1, 2), (0, 0, 2, 2), (0, 0, 2, 1), (1, 0, 3, 2), (1, 0, 2, 2)}.

Let KMn be those α ∈ Compn that avoid KM.

Theorem 4.10. κα is [n− 1]-multiplicity-free if and only if α ∈ KMn.

The proof is given in the companion paper [HY20]. The following problem asks for a
complete generalization of Theorem 4.10:

Problem 4.11. FixD ⊆ [n−1]. Characterize α ∈ Compn(D) such that κα isD-multiplicity-free.

C. Ross and the second author [RY15, Theorem 1.1] provide a (positive) combinatorial
rule for computing theD-split expansion of κα; this rule is reproduced in Section 5.5 As we
explain in the next subsection, this problem is of significance to the sphericality question.

5Similarly, it would also be interesting to generalize [FMS19]. There is a formula of A. Buch-A. Kresch-
H. Tamvakis and the second author [BKTY04] for the split expansion of Schubert polynomials.
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In Example 1.11, we referred to the following compound result:

Theorem 4.12 (cf. [K13] [T07]). Let w ∈ W = Sn. The following are equivalent:

(I) Xw ⊂ GLn/B is a toric variety (with respect to the maximal torus T , i.e., Xw is L∅-
spherical).

(II) w = sr1 · · · srn with ri 6= rj for all i 6= j.
(III) w avoids 321 and 3412.

Proof. The equivalence of (I) and (II) is in [K13], whereas the equivalence of (II) and (III)
is proved in [T07]. �

Using Theorem 4.10 we have an independent proof of (I) ⇐⇒ (III), that we omit for
sake of brevity. Since each of the 21 bad patterns in S5 from Example 1.6 contains 321 or
3412, Theorem 4.12 gives evidence for Conjecture 3.9, because of Proposition 2.13.

4.4. Sphericality and multiplicity-free key polynomials. The key polynomials have a
representation-theoretic interpretation [RS95, I03, M09]. Let X(T ) = Hom(T,C) be the
character group of T , with X(T )+ the dominant integral weights. For λ ∈ X(T ), Lλ denotes
the associated line bundle on G/B, as well as its restriction to Schubert subvarieties (cf.
[BL00, Chapter 2]). Given w ∈ W and λ ∈ X(T )+ the Demazure module is the dual of the
space of sections of Lλ, H0(Xw,Lλ)∗ [D74]. This space has a natural B-module structure
induced by the action of B on Xw. In [RS95], the authors show that

(23) κwλ is the B-character of H0(Xw,Lλ)∗,

where

(24) wλ = (λw−1(1), . . . , λw−1(n)).

(A similar statement holds for all other finite types.)
The following summarizes the fundamental relationship between Levi spherical Schu-

bert varieties, Levi subgroup representation theory, Demazure modules, and split-symmetry:

Theorem 4.13. Let λ ∈ Parn, and w ∈ Sn. Suppose I ⊆ J(w) and D = [n− 1]− I .

(I) H0(Xw,Lλ)∗ is an LI-module with character κwλ. Hence κwλ is a nonnegative integer
combination of D-Schur polynomials in ΠD.

(II) Xw is LI-spherical if and only if κwλ is D-multiplicity-free for all λ ∈ Parn.

Proof. Since I ⊆ J(w), (3) implies LI acts on Xw.
(I) The action of B on H0(Xw,Lλ)∗ is induced by the left multiplication action of B

on Xw [D74]. In the same way, the left multiplication action of LI on Xw induces the
LI action on H0(Xw,Lλ)∗. By (23), a diagonal matrix x ∈ B acts on H0(Xw,Lλ)∗ with
trace κwλ. The same diagonal matrix x ∈ LI acts identically on H0(Xw,Lλ)∗, and thus
also has trace κwλ. Thus κwλ is the character of an LI-module. Since LI is reductive, and
we work over a field of characteristic zero, character theory implies κwλ may be written
a nonnegative integer combination of characters of irreducible LI-modules. That is, a
nonnegative integer combination of D-Schurs in ΠD.

(II) There are numerous equivalent characterizations of spherical varieties found in the
literature and collected in [P14, Theorem 2.1.2]. Of primary interest for us is the following:
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A quasi-projective, normal R-variety Y is R-spherical for a reductive group R if and only
if the R-module H0(Y,L) is multiplicity-free for all R-linearized line bundles L.

All Schubert varieties are quasi-projective and normal [J85]. The line bundles on G/B,
when G is of type A, are indexed by partitions in Parn. Every line bundle on Xw is the
restriction of a line bundle on G/B [B05, Proposition 2.2.8]. Since Lλ, for λ ∈ Parn, is G-
linearized [B05, §1.4], its restriction to Xw, which we also denote by Lλ, is LI-linearized.
Since LI is a product of general linear groups,H0(Xw,Lλ) is a multiplicity-free LI-module
if and only if H0(Xw,Lλ)∗ is a multiplicity-free LI-module. Thus, via the equivalent char-
acterization of spherical varieties, we have that Xw is LI-spherical if and only if the LI-
module H0(Xw,Lλ)∗ is multiplicity-free for all λ ∈ Parn. By (I), this holds if and only if
κwλ is D-multiplicity-free for all λ ∈ Parn. �

Remark 4.14. We similarly expect that Theorem 4.13 holds for Xw in any G/B and that Xw

is LI-spherical if and only if all Demazure modules are multiplicity-free LI-modules. We
plan to explicate this in future work (with Y. Gao).

4.5. Consequences of Theorem 4.13. First, we illustrate how to reprove Proposition 2.13,
in type An−1, but from symmetric function considerations:

Corollary 4.15 (Geometric monotonicity (type An−1)). Suppose w ∈ Sn and I ′ ⊆ I ⊆ J(w).
If Xw is LI′-spherical, then Xw is LI-spherical.

Proof. Suppose Xw is not LI-spherical. By Theorem 4.13(II), there exists λ ∈ Parn such that
κwλ is not D-multiplicity-free, where D = [n− 1]− I = {d1 < d2 < . . . < dk}. That is,

(25) κwλ =
∑

(λ1,...,λk)∈ParD

cλ1,...,λksλ1,...,λk

and there exists (λ1, . . . , λk) ∈ ParD such that cλ1,...,λk > 1.
By induction, we may assume #(I − I ′) = 1. Thus

D′ := [n− 1]− I ′ = {d1 < d2 < . . . < df < d′f < df+1 < . . . < dk} ⊇ D.

In general, let µ ∈ Parm. Then it is standard (see, e.g., [S99, (7.66)]) that

(26) sµ(x1, . . . , xm) =
∑
π,θ

Cµ
π,θsπ(x1, . . . , xa)sθ(xa+1, . . . , xm)

where Cµ
π,θ ≥ 0 is the Littlewood-Richardson coefficient. Now apply (26) to each term of (25):

µ = λf , m = df − df−1 and a = df ′ − df . Thereby, we obtain a D′-Schur expansion of κwλ
in ΠD′ which also must have multiplicity. Now apply Theorem 4.13(II) once more. �

Second, towards Problem 4.11, we offer:

Theorem 4.16. Suppose α ∈ KMn ∩ Compn(D). κα is D-multiplicity-free if either:

(I) α ∈ Compn has all parts distinct, that is, αi 6= αj for i 6= j; or
(II) α also avoids (0, 0, 1, 1).

Proof. (I): Let λ be the partition obtained by sorting the parts of α in decreasing order. Let
w ∈ Sn be such that wλ = α (this permutation is unique by the distinct parts hypothesis).
We claim w avoids 321 and 3412. Suppose not. Observe that since 321 and 3412 are self-
inverse, this means w−1 contains a 321 or 3412 pattern. In the former case, let i < j < k
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be the indices of the 321 pattern. Then (αi, αj, αk) = (λw−1(i), λw−1(j), λw−1(k)) and since
w−1(i) > w−1(j) > w−1(k), we have λw−1(i) < λw−1(j) < λw−1(k) which means αi < αj < αk
is a (0, 1, 2)-pattern, a contradiction. Similarly, one argues that if w−1 contains a 3412
pattern, then α contains (1, 0, 3, 2), another contradiction.

Hence w avoids 321 and 3412. So, by Theorem 4.12, Xw is L∅-spherical. Thus, by Theo-
rem 4.13(II), κwλ = κα is multiplicity-free. Now apply Corollary 4.15 (or Proposition 2.13).

(II) Let λ be as above. Since α might not have distinct parts, there is a choice of w such
that wλ = α. Choose w such that if

(27) αi = αj and i < j ⇒ w−1(i) < w−1(j).

We claim w (equivalently w−1) avoids 321 and 3412. Suppose not. Say w−1 contains 321
at positions i < j < k. Then by (27) this means (λw−1(i) < λw−1(j) < λw−1(k)) and hence
αi < αj < αk forms a (0, 1, 2) pattern, a contradiction. Thus suppose w−1 contains a 3412
pattern at i < j < k < `. By the same reasoning, we know αi ≥ αj, αj < αk ≥ α`, α` > αi.
Case 1: (αi = αj) If αk = αj+1 then α` = αk (otherwise we contradict (27). Then α contains
(0, 0, 1, 1), a contradiction. Otherwise αk ≥ αj + 2, and α contains (0, 0, 2, 2) or (0, 0, 2, 1).
Case 2: (αi > αj) Since αk ≥ α` > αi, α contains (1, 0, 3, 2), (1, 0, 2, 2), a contradiction.

Hence w−1 avoids 321 and 3412, and we conclude as in (I). �

Combining Theorem 4.16 with the arguments of [HY20, Section 3.1] gives a relatively
short proof of Theorem 4.10 under the additional hypothesis (I) or (II). However, there is
an obstruction to carrying out the argument to prove Theorem 4.10 completely. Consider
α = (0, 0, 1, 1). Indeed κα is [n− 1]-multiplicity-free. Following the reasoning of the argu-
ment, λ = (1, 1, 0, 0). The permutationsw ∈ S4 such thatwλ = α are 3412, 4312, 3421, 4321,
but each of these contains 321 or 3412. In [HY20], we prove Theorem 4.10 using a different,
purely combinatorial approach.

Third, we examine the following observation that is immediate from Theorem 4.13(II):

Corollary 4.17. Suppose w ∈ Sn and I ⊆ J(w). Let λstaircase = (n, n − 1, n − 2, . . . , 3, 2, 1). If
κwλstaircase is not D-multiplicity-free then Xw is not LI-spherical.

Example 4.18. Let n = 5 and w = 24531. Then Xw ⊂ GL5/B. In Example 3.4, we showed w
is not J(w)-spherical. We now show this agrees with Conjecture 1.9. Let I = J(w) = {1, 3}
and thus D = {2, 4}. Since w−1 = 51423, wλstaircase = w(5, 4, 3, 2, 1) = (1, 5, 2, 4, 3). Now,
κwλstaircase ∈ ΠD and

(28) κ1,5,2,4,3 = s(5,4),(2,1),(3) + s(5,4),(3,2),(1) + s(5,2),(3,2),(3) + 2s(5,3),(3,2),(2) + s(5,3),(2,2),(3)

+ s(5,2),(3,3),(2) + 2s(5,2),(4,2),(2) + s(5,3),(3,3),(1) + s(5,3),(4,1),(2) + s(5,3),(3,1),(3)

+ s(5,3),(4,2),(1) + s(5,2),(4,3),(1) + s(5,2),(4,1),(3) + s(5,4),(2,2),(2) + s(5,4),(3,1),(2)

+ s(5,1),(4,2),(3) + s(5,1),(4,3),(2).

By Corollary 4.17, the multiplicity in (28) says that Xw is not LJ(w)-spherical.
A theorem of V. Lakshmibai-B. Sandhya [LS90] states that Xw is smooth if and only if

w avoids the patterns 3412 and 4231. Hence X24531 is smooth, but not spherical.

Theorem 4.13 does not give an algorithm to proveXw is I-spherical, because it demands
that one check κwλ is D-multiplicity-free for infinitely many λ. A complete solution to
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Problem 4.11 should give a characterization of when Xw is I-spherical. However, one
can obtain an algorithm without solving that problem. The next claim asserts this infinite
check can be reduced to a single check.

Conjecture 4.19. The converse of Corollary 4.17 is true.

Let us also state a weaker assertion:

Conjecture 4.20. If Xw is not LI-spherical, there exists λdistinct = (λ1 > λ2 > . . . > λn) such
that κwλdistinct is not D-multiplicity-free.

Conjecture 4.21. Fix D = {d1 < d2 < . . . < dk} and suppose α, α↑ ∈ Compn(D) where
α↑ = (α1, . . . , αj−1, αj + 1, αj+1, . . . , αn) for some j such that αj + 1 6= αi for all i 6= j. If κα is
not D-multiplicity-free, then κα↑ is not D-multiplicity-free.

Lemma 4.22. Suppose I ⊆ J(w) and D = [n − 1] − I . Let λdistinct = (λ1 > λ2 > . . . > λn).
Then wλdistinct ∈ Compn(D).

Proof. If d 6∈ D then d ∈ I ⊆ J(w). Hence w−1(d) > w−1(d + 1) and λdistinct
w−1(d) < λdistinct

w−1(d+1). So
all descents of wλdistinct must be in D, as desired. �

Proposition 4.23. Conjecture 4.21⇒ Conjecture 4.19.

Proof. Suppose Xw is not LI-spherical for some I ⊆ J(w).
First we show the weaker claim that Conjecture 4.21 ⇒ Conjecture 4.20: By Theo-

rem 4.13(II), there exists λ such that wλ ∈ Compn(D) and κwλ is not D-multiplicity-free.
If λ(0) := λ has distinct parts, let λdistinct := λ. If not, consider the smallest j0 such that
λj0 = λj0+1. Then define

(29) λ(0,j) = (λ1 + 1, λ2 + 1, . . . , λj + 1, λj+1, λj+2, . . . , λj0 , λj0+1, . . . , λn), for 1 ≤ j ≤ j0.

We let λ(0,0) := λ(0). Since λ(0,j) and λ(0,j−1) only differ at position j (by a single increment),
it is immediate from the definitions (24) and (29) as well as the minimality of j0 that the set
of descent positions Desc(wλ(0,j)) of wλ(0,j) contains Desc(wλ(0,j−1)) for 1 < j ≤ j0. Now
repeat this modification with λ(1) := λ(0,j0) replacing the role of λ(0). The minimal j1 such
that λ(1)j1 = λ

(1)
j1+1 satisfies j1 > j0; we similarly construct new partitions λ(1,j) where 1 ≤

j ≤ j1. Hence after a finite number of iterations, we arrive at λdistinct := λ(q) := λ(q−1,jq−1)

with distinct parts. Inductively,

Desc(wλ(p,j)) ⊆ Desc(wλ(q)) ⊆ D,

where the rightmost containment is by Lemma 4.22. Hence, wλ(p,j) ∈ Compn(D) for 0 ≤
p < q and 1 ≤ j ≤ jp. Conjecture 4.21 says that if we have α = wλ(p,j−1) ∈ Compn(D)
and α↑ = wλ(p,j) ∈ Compn(D) such that κα is not D-multiplicity-free, then κα↑ is not D-
multiplicity-free. Applying Conjecture 4.19 repeatedly we see by induction that κwλdistinct

is not D-multiplicity-free, as desired.
Conjecture 4.21 ⇒ Conjecture 4.19: By the previous paragraph, assume there exists

λ[0] = λdistinct such that κwλdistinct is not D-multiplicity-free. If λ[1] := (λ
[0]
1 + 1, λ

[0]
2 , . . . , λ

[0]
n ),

then by Conjecture 4.21, κwλ[1] is notD-multiplicity-free. Iterating this argument, it follows
that if λ[1] := (λ

[0]
1 +h, λ

[0]
2 , . . . , λ

[0]
n ) for any h ≥ 1, the same conclusion holds. For the same

reason, if h > h′ we can ensure λ[2] = (λ
[0]
1 + h, λ

[0]
2 + h′, λ

[0]
3 , . . . , λ

[0]
n ) has that κwλ[2] is not
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D-multiplicity-free. Continuing this line of reasoning, we can conclude that there is r ∈ N
such that λ := λstaircase + (r, r, . . . , r) and κwλ is not D-multiplicity-free.

Now, either directly from the definition of key polynomials from Section 4.2, or, e.g.,
from Kohnert’s rule [K90] we have:

(30) κwλ =

(
n∏
i=1

xri

)
× κwλstaircase .

If µ ∈ Pard then it is easy to see from the definition of Schur polynomials that

(31) (y1 . . . yd)
r × sµ(y1, . . . , yd) = srd+µ(y1, . . . , yd),

where rd + µ = (r + µ1, r + µ2, . . . , r + µd).
Combining (30), (31) and the presumption that κwλ is not D-multiplicity-free, we see

that κwλstaircase is not D-multiplicity-free, as desired. �

In turn, it seems plausible to prove Conjecture 4.21 using [RY15, Theorem 1.1]. We hope
to address this in a sequel. For now, we offer the following evidence for its correctness.

Proposition 4.24. Conjecture 4.21 holds for D = [n− 1].

Proof. This follows from Theorem 4.10 in this fashion: Suppose κα is not [n−1]-multiplicity-
free since (αa, αb, αc, αd) is the pattern (1, 0, 3, 2). If j 6∈ {a, b, c, d} then α↑ still contains
(1, 0, 3, 2). If j = a then (by the hypothesis of Conjecture 4.21) αa + 1 6= αd hence α↑ con-
tains (1, 0, 3, 2) at the same positions. The same conclusion holds if j = b, c, d. Hence by
Theorem 4.10, κα↑ is not [n−1]-multiplicity-free. The other cases are left to the reader. �

5. PROOF OF THE BIGRASSMANNIAN THEOREM

Using the preparation in Sections 2 and 4, we are now ready to prove Theorem 3.6.
First, we prove that three classes (19) of bigrassmannian w ∈ Sn are J(w)-spherical.

Suppose code(w) = (0f , a, 0g). Then the canonical reduced word (see Example 2.7) is

Rcanonical(w) = sf+asf+a−1 · · · sf+2sf+1.

By Lemma 3.5, J(w) = {f + a}. Since Rcanonical(w) uses distinct generators, it is the J(w)-
witness, as desired. Similarly, one argues the case that code(w) = (0f , 1b, 0g). Finally,
suppose code(w) = (0f , 22, 0g). In this case,

Rcanonical(w) = sf+2sf+1sf+3sf+2.

Since (by Lemma 3.5) J(w) = {f + 2} we see that Rcanonical(w) is again a J(w)-witness, as
desired.

Conversely, suppose that w ∈ Sn is bigrassmannian, but not one of the three cases
(19). Thus, D(w) either has at least three columns, or at least three rows. Assume it is the
former case (the argument for the latter case is similar). Look at the canonical filling of
D(w). In the northwest 2× 3 subrectangle, the filling, read right to left and top down is

(32) sf+3sf+2sf+1sf+4sf+3sf+2.

Let u be the associated permutation and Ru ∈ Red(u) be the expression (32). Ru is a
subexpression of Rcanonical(w). Hence by Theorem 2.1, u ≤ v. By inspection, any R′ ∈
Red(u) has at least two sf+2’s. By assumption, J(w) = {d} where d ≥ f + 3 (here we
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are again using Lemma 3.5). So every R′ fails (S.1’) (with respect to J(w)). Thus by
Proposition 2.2, w is not J(w)-spherical.

Next, we show that for w ∈ Sn satisfying (19), Xw is LJ(w)-spherical. First suppose

code(w) ∈ {(0f , a, 0g), (0f , 1b, 0g)}.
The above analysis shows that Rcanonical(w) satisfies Theorem 4.12(II). Hence Xw is a toric
variety (by the equivalence (I) ⇐⇒ (II) of said theorem). By Corollary 4.15 (or Proposi-
tion 2.13), Xw is LJ(w)-spherical. Lastly, suppose

code(w) = (0f , 22, 0g).

First, assume f = 0. Hence in this case the permutation is w′ = s2s1s3s2 ∈ S4. Now
w′ = 3412 in one-line notation, and J(w′) = {2}.

Claim 5.1. X3412B ⊂ GL4/B is L{2}-spherical.

Proof of Claim 5.1: Fix Bss := SL4 ∩ B, and T ss := SL4 ∩ T as our choice of Borel sub-
group and maximal Torus in SL4. For I ⊆ 2[3], let LssI ≤ P ss

I denote the associated Levi
and parabolic subgroups in SL4. We prove X3412Bss ⊂ SL4/B

ss is Lss{2}-spherical. Since
SLn/B

ss ∼= GLn/B as SLn-varieties, this induces an Lss{2}-equivariant isomorphism be-
tween X3412Bss and X3412B. Thus if X3412Bss is Lss{2}-spherical, then X3412B is Lss{2}-spherical.
Since Lss{2} ≤ L{2}, this in turn implies X3412B is L{2}-spherical.

The canonical projection π : SL4/B
ss → SL4/P

ss
{1,3} induces a birational morphism

X3412Bss → X3412P ss
{1,3}
∼= SL4/P

ss
{1,3}.

Since π is SL4-equivariant, this birational morphism is Lss{2}-equivariant. Thus X3412Bss is
Lss{2}-spherical if and only if SL4/P

ss
{1,3} is Lss{2}-spherical. As noted in the proof of Theo-

rem 2.4, the latter holds if and only if SL4/P
ss
{2} × SL4/P

ss
{1,3} is spherical for the diagonal

SL4 action. Finally, by [S03][Corollary 1.3.A(ii)] this diagonal action is spherical. �

For general f , since w = sf+2sf+1sf+3sf+2, in fact w = φ(w′) where φ is the Dynkin
diagram embedding of

1′ 2′ 3′
into

1 2 n− 1 n
that sends 1′ 7→ f + 1, 2′ 7→ f + 2, 3′ 7→

f + 3. This induces a map of the Weyl groups that sends w′ to w. Now Claim 5.1 and
Proposition 2.19 imply that Xw is LJ(w)-spherical.

It remains to show that if w ∈ Sn does not satisfy (19), then Xw is not LJ(w)-spherical.
Now, D(w) either contains a 2× 3 rectangle or a 3× 2 rectangle. Let us assume we are in
the former case (the other case is similar, and left to the reader).

Claim 5.2. If D = {1, 2, 3, . . . , a− 1, a+ 1, a+ 2}, and a ≥ 3, then κ0a,2,1 is not D-multiplicity-
free. s∅a−3,(1),(1),(1,0),∅,...,∅ appears in the expansion (22) of κ0a,2,1, with multiplicity (at least) 2.

Proof of Claim 5.2: We recall [RY15, Theorem 1.1] which gives a nonnegative combinatorial
rule to compute the expansion (22) of f = κα for any α ∈ Compn(D). Let w[α] be the
unique permutation in S∞ such that code(w[α]) = α (ignoring any trailing 0’s). That such
a permutation exists and is unique follows from, e.g., [M01, Proposition 2.1.2].

We now construct a tableau T [α]. Given w(1) = w[α], let i1 be the position of the last
descent of w(1), and let i2 be the location of the rightmost descent left of i1 in w(1)si1 (so
i2 < i1). Repeat, defining ij to be the position of the rightmost descent to the left of ij−1
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in w(1)si1si2 · · · sij−1
. Suppose no descent appears left of ij in w(1)si1si2 · · · sij . In that case,

stop, and, we define the first column of T [α] to be filled by i1 > i2 > . . . > ij (from
bottom to top). Now let w(2) = w(1)si1si2 · · · sij and similarly we determine the entries of
the second column. We repeat until we arrive at k such that w(k) = id.

An increasing tableau T of shape λ is a filling of the Young diagram λ with positive inte-
gers that is strictly increasing, left to right along rows, and top to bottom along columns.
Let row(T ) be the right to left, top to bottom row reading word of T . Also let min(T ) be
the value of the minimum entry of T .

Given a = (a1, a2, . . .) such that sa1sa2 · · · is a reduced expression (for some permuta-
tion), we will let EGLS(a) be the Edelman-Greene column insertion tableau; we refer to [RY15,
Section 2.1] for a summary of this well-known concept from algebraic combinatorics. Be-
low, we will mildly abuse notation and refer to a and sa1sa2 · · · interchangeably.

Theorem 5.3 (Theorem 1.1 of [RY15]). Let α ∈ Compn(D) and f = κα. The coefficient cλ1,...,λk
in the expansion (22) counts the number of sequences of increasing tableaux (T1, . . . , Tk) such that

(a) Ti is of shape λi
(b) min(T1) > 0,min(T2) > d1, . . . ,min(Tk) > dk−1;
(c) row(T1) · row(T2) · · · row(Tk) ∈ Red(w[α]); and
(d) EGLS(row(T1) · row(T2) · · · row(Tk)) = T [α].

In our particular case, α = (0a, 2, 1). Hence,

w[α] = 12 · · · a a+ 3 a+ 2 a+ 1 (one line notation) = sa+1sa+2sa+1 ≡ sa+2sa+1sa+2.

Then the two tableau sequences are

(∅a−3, a+ 1 , a+ 2 , a+ 1 , ∅, . . . , ∅) and (∅a−3, a+ 2 , a+ 1 , a+ 2 , ∅, . . . , ∅).

Here T [α] = a+ 1a+ 2

a+ 2

. It is straightforward to check the conditions of Theorem 5.3 are satis-

fied. In particular, condition (d) is requiring that the Edelman-Greene column insertions
of a + 1 a + 2 a + 1 and a + 2 a + 1 a + 2 both give T [α]; this is true. (In fact these are the
only valid tableau sequences for the datum, although we do not need this.) �

Claim 5.4. Let D′ = {1, 2, 3, . . . , f, f + 1, f + 2, . . . , f + (a− 1), f + (a+ 1), f + (a+ 2)} and
α = (3f , 0a, 2, 1) Then κα is not D′-multiplicity-free.

Proof of Claim 5.4: Straightforwardly from Kohnert’s rule [K90],

(33) κα =

f∏
i=1

x3i × κ0a,2,1(xf+1, xf+2, . . . , xf+(a+2)).

Suppose cλ1,λ2,λ3,λ4,... is the coefficient of sλ1,λ2,λ3,λ4,... in the D-expansion (22) of κ0a,2,1. Let
c(3),(3),...,(3),λ1,λ2,λ3,λ4,... be the D′-split-expansion of κα (here there are f -many (3)’s). Then
(33) implies

c(3),(3),...,(3),λ1,λ2,λ3,λ4,... = cλ1,λ2,λ3,λ4,....

Now apply Claim 5.2. �

Since code(w) = (0f , ab, 0g) where a ≥ 3 and b ≥ 2,

w−1 = 1 2 3 · · · f f + b+ 1 f + b+ 2 · · · f + b+ a f + 1 f + 2 · · · f + b · · · ,
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where the rightmost “· · · ” contains the remaining numbers from [n] listed in increasing
order. Let

λ = 3, 3, . . . , 3︸ ︷︷ ︸
f -many

, 2, 1, 0, 0, . . . , 0︸ ︷︷ ︸
(n− f − 2)-many

.

Thus
wλ := (λw−1(1), . . . , λw−1(n)) = (3f , 0a, 2, 1, 0n−f−a−2).

SetD′′ = D′∪{f+(a+3), f+(a+4), f+(a+5), . . .}. Hence it follows from Claim 5.4 that κwλ
is not D′′-multiplicity-free. By Lemma 3.5, J(w) = {f +a}, and hence [n−1]−J(w) = D′′;
therefore, Xw is not LJ(w)-spherical, by Theorem 4.13(II). �
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[FMS19] A. Fink, K. Mészáros, and A. St. Dizier. Zero-one Schubert polynomials, Math. Z., 2020.
[F97] W. Fulton, Young tableaux. With applications to representation theory and geometry. London Mathe-

matical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
[G21] C. Gaetz, Spherical Schubert varieties and pattern avoidance, preprint, 2021. arXiv:2104.03264
[GHY21] Y. Gao, R. Hodges, and A. Yong, Classification of Levi-spherical Schubert varieties, preprint, 2021.

arXiv:2104.10101
[G10] C. Gutschwager, On multiplicity-free skew characters and the Schubert calculus. Ann. Comb. 14

(2010), no. 3, 339–353.
[HL18] R. Hodges and V. Lakshmibai, Levi subgroup actions on Schubert varieties, induced decompositions

of their coordinate rings, and sphericity consequences, Algebr. Represent. Theory 21 (2018), no. 6,
1219–1249.

[HL18] , A classification of spherical Schubert varieties in the Grassmannian, preprint, 2018.
arXiv:1809.08003

[HY20] R. Hodges and A. Yong, Multiplicity-free key polynomials, preprint, 2020.
[H90] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathe-

matics, 29. Cambridge University Press, Cambridge, 1990. xii+204 pp.
[I03] B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), no.

2, 299–318.
[J85] A. Joseph. On the Demazure character formula Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), no. 3, 389-

419.
[K13] P. Karuppuchamy, On Schubert varieties. Comm. Algebra 41 (2013), no. 4, 1365–1368.
[K90] A. Kohnert, Weintrauben, Polynome, Tableaux, Bayreuth Math. Schrift. 38(1990), 1–97.
[LS90] V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in Sl(n)/B. Proc. Indian

Acad. Sci. Math. Sci. 100 (1990), no. 1, 45–52.
[L13] A. Lascoux, Polynomials, 2013. http://www-igm.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf
[LS96] A. Lascoux and M.-P. Schützenberger, Treillis et bases des groupes de Coxeter. Electron. J. Combin. 3

(1996), no. 2, Research paper 27, approx. 35 pp.
[L01] D. Luna, Variétés sphériques de type A. Publ. Math. Inst. Hautes Etudes Sci. No. 94 (2001), 161–226.
[MWZ99] P. Magyar, J. Weyman, and A. Zelevinsky, Multiple flag varieties of finite type. Adv. Math. 141

(1999), no. 1, 97–118.
[M01] L. Manivel, Symmetric functions, Schubert polynomials and degeneracy loci. Translated from the 1998

French original by John R. Swallow. SMF/AMS Texts and Monographs, American Mathematical
Society, Providence, 2001.

[M09] S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin. 29 (2009), no. 3,
295–313.

[PS19] O. Pechenik and D. Searles, Asymmetric function theory, preprint, 2019. arXiv:1904.01358.
[P14] N. Perrin, On the geometry of spherical varieties.Transform. Groups 19 (2014), no. 1, 171–223.
[RR85] S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties. Invent.

Math. 79 (1985), no. 2, 217–224.
[RS95] V. Reiner and M. Shimozono, Key polynomials and a flagged Littlewood-Richardson rule,

J. Comb. Theory. Ser. A., 70(1995), 107–143.
[RS16] E. Richmond, W. Slofstra. Billey-Postnikov decompositions and the fibre bundle structure of Schubert

varieties. Math. Ann. 366 (2016), no. 1-2, 31–55.
[RY15] C. Ross and A. Yong, Combinatorial rules for three bases of polynomials, Sém. Lothar. Combin. 74

([2015-2018]), Art. B74a, 11 pp.
[S99] R. P. Stanley, Enumerative combinatorics. Vol. 2. With a foreword by Gian-Carlo Rota and appen-

dix 1 by Sergey Fomin. Cambridge Studies in Advanced Mathematics, 62. Cambridge University
Press, Cambridge, 1999. xii+581 pp.

26

http://www-igm.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf


[S01] J. R. Stembridge, Multiplicity-free products of Schur functions. Ann. Comb. 5 (2001), no. 2, 113-121.
[S03] , Multiplicity-free products and restrictions of Weyl characters. Represent. Theory 7 (2003),

404–439.
[T07] B. E. Tenner, Pattern avoidance and the Bruhat order. J. Combin. Theory Ser. A 114 (2007), no. 5,

888–905.
[TY10] H. Thomas and A. Yong, Multiplicity-free Schubert calculus. Canad. Math. Bull. 53 (2010), no. 1,

171–186.

DEPT. OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801
CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS, UC SAN DIEGO, LA JOLLA, CA 92093

Email address: rhodges@ucsd.edu

DEPT. OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801

Email address: ayong@illinois.edu

27


	1. Introduction
	1.1. Main definition
	1.2. Spherical elements and Schubert geometry
	1.3. Summary of the remainder of this paper

	2. Basic properties and more examples
	3. The general linear group
	4. Polynomials
	4.1. Split-symmetry in algebraic combinatorics
	4.2. Key polynomials
	4.3. Split-symmetry and multiplicity-free problems
	4.4. Sphericality and multiplicity-free key polynomials
	4.5. Consequences of Theorem 4.13

	5. Proof of the bigrassmannian theorem
	Acknowledgements
	References

