Computational complexity, Newton polytopes, and Schubert polynomials

Anshul Adve* ${ }^{* 1}$, Colleen Robichaux ${ }^{\dagger 2}$ and Alexander Yong ${ }^{\ddagger 2}$
${ }^{1}$ UCLA, Los Angeles, CA 90095
${ }^{2}$ Dept. of Mathematics, U. Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

The nonvanishing problem asks if a coefficient of a polynomial is nonzero. Many families of polynomials in algebraic combinatorics admit combinatorial counting rules and simultaneously enjoy having saturated Newton polytopes (SNP). Thereby, in amenable cases, nonvanishing is in the complexity class NP \cap coNP of problems with "good characterizations". This suggests a new algebraic combinatorics viewpoint on complexity theory.

This paper focuses on the case of Schubert polynomials. These form a basis of all polynomials and appear in the study of cohomology rings of flag manifolds. We give a tableau criterion for nonvanishing, from which we deduce the first polynomial time algorithm. These results are obtained from new characterizations of the Schubitope, a generalization of the permutahedron defined for any subset of the $n \times n$ grid, together with a theorem of A. Fink, K. Mészáros, and A. St. Dizier (2018), which proved a conjecture of C. Monical, N. Tokcan, and the third author (2017).

Keywords: Schubert polynomials, Newton polytopes, computational complexity

1 Introduction

The main results of this extended abstract of [1,2] concern Schubert polynomials; these are found in Section 2. Those results illustrate a general algebraic combinatorics paradigm for computational complexity theory that we wish to put forward here.

[^0]
1.1 Nonvanishing decision problems and SNP

Algebraic combinatorics studies families of polynomials parameterized by combinatorial objects \diamond

$$
F_{\diamond}=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} c_{\alpha, \diamond} x^{\alpha}=\sum_{s \in \mathcal{S}} \mathrm{wt}(s) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

each viewed as the multivariate weight generating series for some combinatorially defined set \mathcal{S}.

Example 1.1 (Schur polynomials). $F_{\diamond}=s_{\lambda}$ is a Schur polynomial, where $\diamond=\lambda$ is an integer partition. Here, \mathcal{S} is the set of semistandard Young tableaux of shape λ with entries in $[n]$, and $\mathrm{wt}(s)=\prod_{i} x_{i}^{\# i \in s}$. Schur polynomials are an important basis of the vector space of all symmetric polynomials.

Example 1.2 (Stanley's chromatic symmetric polynomial). Another symmetric polynomial is Stanley's chromatic polynomial $F_{\diamond}=\chi_{G}$ [20]. This time $\diamond=G=(V, E)$ is a simple graph, \mathcal{S} is the set of proper n-colorings of G, i.e., functions $s: V \rightarrow\{1,2, \ldots, n\}$ such that $s(i) \neq s(j)$ if $\{i, j\} \in E$, and $w t(s)=\prod_{i} x_{i}^{\# s^{-1}(i)}$.
Example 1.3 (Schubert polynomials). The central example of this paper is non-symmetric. It is the family of Schubert polynomials $F_{\diamond}=\mathfrak{S}_{w}$, a basis of all polynomials. Now, $\diamond=w$ is a permutation. There are many choices for \mathcal{S}, such as the reduced compatible sequences of [5]. Definitions are given in Section 2.

Problem 1.4 (nonvanishing). What is the complexity of deciding $c_{\alpha, \diamond} \neq 0$, as measured in the input size of α and \diamond (under the assumption that arithmetic operations take constant time)?

In this paper, we give a polynomial time algorithm to determine $c_{\alpha, w} \neq 0$ for the Schubert polynomial. In general, nonvanishing may be undecidable: fix $S \subseteq \mathbb{N}$ that is not recursively enumerable, and let $F_{m}=\sum_{i=1}^{m} c_{i, m} x^{m}$ with $c_{i, m}=1$ if $i \in S$ and 0 otherwise. Such sets S exist because there are uncountably many subsets of \mathbb{N}, but only countably many algorithms. One can explicitly take S to be the set of halting Turing machines under some numerical encoding [21], or the set of Gödel encodings [11] of statements about $(\mathbb{N},+, \times)$ provable in first-order Peano arithmetic. All this said, in our cases of interest, $c_{\alpha, \diamond} \in \mathbb{Z}_{\geq 0}$ has combinatorial positivity: it is given by a counting rule that implies nonvanishing is in the class NP of problems with a polynomial time checkable certificate of a YES decision.

Evidently, nonvanishing concerns the Newton polytope,

$$
\operatorname{Newton}\left(F_{\diamond}\right)=\operatorname{conv}\left\{\alpha: c_{\alpha, \diamond} \neq 0\right\} \subseteq \mathbb{R}^{n}
$$

C. Monical, N. Tokcan and the third author [17] showed that for many examples, F_{\diamond} has saturated Newton polytope (SNP), i.e., $\gamma \in \operatorname{Newton}\left(F_{\diamond}\right) \cap \mathbb{Z}^{n} \Longleftrightarrow c_{\gamma, \diamond} \neq 0$. The relevance of SNP to Problem 1.4 is:

SNP \Rightarrow nonvanishing $\left(F_{\diamond}\right)$ is equivalent to checking membership of a lattice point in Newton $\left(F_{\diamond}\right)$.

Example 1.5 (nonvanishing $\left(s_{\lambda}\right)$ is in P). Newton $\left(s_{\lambda}\right)$ is the λ-permutahedron \mathcal{P}_{λ}, the convex hull of the S_{n}-orbit of $\lambda \in \mathbb{R}^{n}$. By symmetry one may assume α is a partition. Thus $c_{\alpha, \lambda}$ is the Kostka coefficient, and $c_{\alpha, \lambda}=0$ if and only if $\alpha \leq \lambda$ in dominance order. So nonvanishing $\left(s_{\lambda}\right)$ is in the class P of polynomial time problems.

Does the "niceness" of combinatorial positivity and SNP transfer to complexity?
Question 1.6. Under what conditions does combinatorial positivity and SNP of $\left\{F_{\diamond}\right\}$ imply nonvanishing $\left(F_{\diamond}\right) \in \mathrm{P}$, or at least that nonvanishing $\left(F_{\diamond}\right) \notin$ NP-complete?

On the other hand, χ_{G} is not generally SNP [17] and nonvanishing $\left(\chi_{G}\right)$ is hard:
Example 1.7 (χ_{G}-nonvanishing is NP-complete). For χ_{G}, nonvanishing is clearly in NP. In fact, for each fixed $n \geq 3$ it is NP-complete. The n-coloring problem of deciding if a graph has an n-proper coloring is NP-complete for each fixed $n \geq 3$. Given an efficient oracle to solve nonvanishing $\left(\chi_{G}\right)$, call it on each partition of $|V|$ with n parts to decide if there exists a proper n-coloring. This requires only $O\left(|V|^{n}\right)$ calls, so it is a polynomial reduction of n-coloring to nonvanishing $\left(\chi_{G}\right)$.

1.2 Context from computer science; connection to Stanley's Schur positivity conjecture

Examples 1.5 and 1.7 show that nonvanishing can achieve the extremes of NP. What about the non-extremes?

The class NP-intermediate consists of NP problems that are neither in P nor NPcomplete. Ladner's theorem states that if $\mathrm{P} \neq \mathrm{NP}$ there exists an (artificial) NP-intermediate problem. Many natural problems from algebra, number theory, game theory and combinatorics are suspected to be NP-intermediate. An example is the Graph Isomorphism problem.

The class coNP consists of problems whose complements are in NP, i.e., those with a polynomial time checkable certificate of a NO decision.

SNP \Rightarrow given a halfspace description of the Newton polytope, an inequality violation checkable in polynomial time gives a coNP certificate.

The above implication of SNP says that any solution $\left\{F_{\diamond}\right\}$ to the following problem gives nonvanishing $\left(F_{\diamond}\right) \in \mathrm{NP} \cap \operatorname{coNP}$.

Problem 1.8. For a combinatorially positive family of SNP polynomials $\left\{F_{\diamond}\right\}$, determine half space descriptions of Newton $\left(F_{\diamond}\right)$.

The class NP \cap coNP is intriguing. Membership of a problem in NP \cap coNP sometimes foreshadows the harder proof that it is in P. For example, consider

$$
\text { primes }=\text { "is a positive integer } n \text { prime?" }
$$

Clearly, primes \in coNP. In 1975, V. Pratt [18] showed primes \in NP. It was about thirty years before the celebrated discovery of the AKS primality test of M. Agrawal, N. Kayal, and N. Saxena [3], establishing primes $\in P$.

In retrospect, another example is the linear programming problem

$$
\text { LPfeasibility }=\text { "is } A \mathbf{x}=b, \mathbf{x} \geq 0 \text { feasible?" }
$$

Clearly LPfeasibility \in NP. Membership in coNP is a consequence of Farkas' Lemma (1902), which is a foundation for LP duality, conjectured by J. von Neumann and proved by G. Dantzig in 1948 (cf. [7]). Yet, it was not until 1979, with L. Khachiyan's work on the ellipsoid method that LPfeasibility $\in \mathrm{P}$ was proved; see, e.g., the textbook [19].

These examples suggest $P=N P \cap$ coNP. However, one has integer factorization
factorization $=$ "given $1<a<b$ does there exist a divisor d of b where $1 \leq d \leq a$?"
An NP certificate is a divisor. A coNP certificate is a prime factorization (verified using the AKS test). Most public key cryptography (such as RSA) relies on $P \neq N P \cap$ coNP.

The debate $P \stackrel{?}{=} N P \cap$ coNP may be rephrased as "are problems with good characterizations in P?". One wants new examples of members of NP \cap coNP that are not known to be in P. If such examples are proved to be in P, this adds evidence for " $=$ ". Yet, relatively few examples are known. In addition to integer factorization, one has (decision) Discrete Log, Stochastic Games [6], Parity Games [14] and Lattice Problems [4]. (It is open whether Graph Isomorphism is in coNP.) We now connect this discussion with Example 1.7.

Problem 1.9. Does restricting to a subclass of graphs G where χ_{G} is SNP (or Schur positive) change the complexity of n-coloring?

Conjecture 1.10 (R. P. Stanley [20]). If G is claw-free (i.e., it contains no induced $K_{1,3}$ subgraph), then χ_{G} is Schur positive.

Conjecture 1.11 (C. Monical [16]). If χ_{G} is Schur positive, then it is SNP.
Combining these two conjectures gives
Conjecture 1.12. If G is claw-free then χ_{G} is SNP.
If coNP contains an NP-complete problem then NP $=$ coNP [12], solving an open problem with " $=$ ". ${ }^{1}$ Now, by [13], n-coloring claw-free graphs is NP-complete. Therefore:

[^1]If Conjecture 1.12 holds, Problem 1.9 and Question 1.6 are answered negatively. Moreover, a solution to Problem 1.8 proves nonvanishing $\left(\chi_{\text {claw-free } G}\right)$ is coNP, and hence NP $=$ coNP.

This suggests a new complexity-theoretic rationale for the study of χ_{G}.

1.3 An algebraic combinatorics paradigm for complexity

Summarizing, we are motivated by complexity to study nonvanishing in algebraic combinatorics. Many polynomial families $\left\{F_{\diamond}\right\}$ have combinatorial positivity and (conjecturally) SNP [17]. Together, with a solution to Problem 1.8, nonvanishing $\in N P \cap$ coNP.

For each family $\left\{F_{\diamond}\right\}$, one arrives at one of four logical outcomes, depending on the complexity of nonvanishing $\left(F_{\diamond}\right)$ within NP \cap coNP:
(I) Unknown: it is a problem, in and of itself, to find additional problems that are in $N P \cap$ coNP that are not known to be in P .
(II) P: Give an algorithm. It will likely illuminate some special structure, of independent combinatorial interest.
(III) NP-complete: proof solves NP $\stackrel{?}{=}$ coNP with (a suprising) " $=$ ".
(IV) NP-intermediate: proof solves NP-intermediate $\stackrel{?}{=} \varnothing$ with " \neq " (hence $P \neq N P$).

Our main results in Section 2 illustrate (II) for Schubert polynomials.

2 Main results: Schubert polynomials

Schubert polynomials form a linear basis of all polynomials $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, \ldots\right]$. They were introduced by A. Lascoux-M.-P. Schützenberger [15] to study the cohomology ring of the flag manifold. These polynomials represent the Schubert classes under the Borel isomorphism. A reference is the textbook [10].

The Schubert polynomial $\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n}\right)$ is defined recursively for any permutation $w \in S_{n}$ as follows. If $w_{0}=n n-1 \cdots 21$ is the longest length permutation in S_{n}, then

$$
\mathfrak{S}_{w_{0}}\left(x_{1}, \ldots, x_{n}\right):=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}
$$

Otherwise, $w \neq w_{0}$ and there exists i such that $w(i)<w(i+1)$. Then one sets

$$
\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n}\right)=\partial_{i} \mathfrak{S}_{w s_{i}}\left(x_{1}, \ldots, x_{n}\right)
$$

where $\partial_{i} f:=\frac{f-s_{i} f}{x_{i}-x_{i+1}}$, and s_{i} is the transposition swapping i and $i+1$. Since ∂_{i} satisfies

$$
\partial_{i} \partial_{j}=\partial_{j} \partial_{i} \text { for }|i-j|>1, \text { and } \partial_{i} \partial_{i+1} \partial_{i}=\partial_{i+1} \partial_{i} \partial_{i+1}
$$

the above description of \mathfrak{S}_{w} is well-defined. In addition, under the inclusion $\iota: S_{n} \hookrightarrow$ S_{n+1} defined by $w(1) \cdots w(n) \mapsto w(1) \cdots w(n) n+1, \mathfrak{S}_{w}=\mathfrak{S}_{\iota(w)}$. Thus one unambiguously refers to \mathfrak{S}_{w} for each $w \in S_{\infty}=\bigcup_{n \geq 1} S_{n}$.

To each $w \in S_{\infty}$ there is a unique code, $\operatorname{code}(w)=\left(c_{1}, c_{2}, \ldots, c_{L}\right) \in \mathbb{Z}_{\geq 0}^{L}$, where c_{i} counts the number of boxes in the i-th row of the Rothe diagram $D(w)$ of w. If w is the identity then $\operatorname{code}(w)=\varnothing$; otherwise, $c_{L}>0$ (i.e., we truncate any trailing zeroes).

Now, $c_{\alpha, w}=0$ unless $\alpha_{i}=0$ for $i>L$, and moreover, $c_{\alpha, w} \in \mathbb{Z}_{\geq 0}$. Let Schubert be the nonvanishing problem for Schubert polynomials. The INPUT is code $=\left(c_{1}, \ldots c_{L}\right) \in \mathbb{Z}_{\geq 0}^{L}$ with $c_{L}>0$ and $\alpha \in \mathbb{Z}_{\geq 0}^{L}$. Schubert returns YES if $c_{\alpha, w}>0$ and NO otherwise.

Theorem 2.1. Schubert $\in P$.
We prove Theorem 2.1 using another result. For $w \in S_{n}$, let $\operatorname{Perfect} \operatorname{Tab}(D(w), \alpha)$ be the fillings of $D(w)$ with α_{k} many $k^{\prime} s$, where entries in each column are distinct, and any entry in row i is $\leq i$. Let $\operatorname{Perfect~}^{\text {Tab }} \ll(D(w), \alpha) \subseteq \operatorname{Perfect} \operatorname{Tab}(D(w), \alpha)$ be fillings where entries in each column increase from top to bottom.

Theorem 2.2. $c_{\alpha, w}>0 \Longleftrightarrow \operatorname{PerfectTab}(D(w), \alpha) \neq \varnothing \Longleftrightarrow \operatorname{Perfect} \operatorname{Tab}_{<}(D(w), \alpha) \neq \varnothing$
In general \#Perfect $\operatorname{Tab}(D(w), \alpha) \neq c_{\alpha, w}$ but rather \#Perfect $\operatorname{Tab}(D(w), \alpha) \geq c_{\alpha, w}$ (cf. [9]).

Hence, for instance, $c_{(2,1,1), 31524}>0$ but $c_{(4), 31524}=0$.
To prove Theorems 2.1 and 2.2 we establish more general results about the Schubitope introduced in [17]. This polytope \mathcal{S}_{D} generalizes the λ-permutahedron of Example 1.5. It is defined with a halfspace description for any diagram of boxes $D \subseteq[n]^{2}$.

In the case of Rothe diagrams $D:=D(w)$, it was conjectured in [17] that $\mathcal{S}_{D(w)}$ is the Newton polytope of \mathfrak{S}_{w} and moreover that \mathfrak{S}_{w} has the SNP property. These conjectures were proved by A. Fink-K. Mészáros-A. St. Dizier [8]. This, combined with Theorem 3.5 and properties of perfect tableaux, proves Theorem 2.2.

Key polynomials κ_{β} are a specialization of the non-symmetric Macdonald polynomials. Similarly to the above case, for skyline diagrams $D:=D_{\beta}$, [17] conjectured that $\mathcal{S}_{D_{\beta}}$ is the Newton polytope of κ_{β} and moreover that κ_{β} are SNP; this is proved in [8]. Nonvanishing is also in P , provable using results of Section 4 in a manner analogous to that used for the Schubert polynomials.

3 The Schubitope

Fix $n \in \mathbb{Z}_{>0}$ and let $D \subseteq[n]^{2}$. We call D a diagram and visualize D as a subset of an $n \times n$ grid of boxes, oriented so that $(r, c) \in[n]^{2}$ represents the box in the r th row from the top and the c th column from the left. Given $S \subseteq[n]$ and a column $c \in[n]$, construct a string denoted word $_{c, S}(D)$ by reading column c from top to bottom and recording

- \quad if $(r, c) \notin D$ and $r \in S$,
-) if $(r, c) \in D$ and $r \notin S$, and
- \star if $(r, c) \in D$ and $r \in S$.

Let $\theta_{D}^{c}(S)=\#\left\{\star^{\prime}\right.$ s in $\left.\operatorname{word}_{c, S}(D)\right\}+\#\left\{\right.$ paired ()$^{\prime}$ s in $\left.\operatorname{word}_{c, S}(D)\right\}$ and

$$
\theta_{D}(S)=\sum_{c=1}^{n} \theta_{D}^{c}(S)
$$

Example 3.1. In the diagram D below, we labelled the corresponding strings for word $_{c, S}(D)$ for $S=\{1,3\}$. For instance, we see $\operatorname{word}_{5,\{1,3\}}(D)=(\star)$.

The Schubitope \mathcal{S}_{D}, as defined in [17], is the polytope

$$
\begin{equation*}
\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{\geq 0}^{n}: \alpha_{1}+\cdots+\alpha_{n}=\# D \text { and } \sum_{i \in S} \alpha_{i} \leq \theta_{D}(S) \text { for all } S \subseteq[n]\right\} \tag{3.1}
\end{equation*}
$$

3.1 Characterizations via tableaux

A tableau of shape D is a map

$$
\tau: D \rightarrow[n] \cup\{0\}
$$

where $\tau(r, c)=0$ indicates that the box (r, c) is unlabelled. Let $\operatorname{Tab}(D)$ denote the set of such tableaux. One of the ideas in our proofs is to reformulate the original definition of $\theta_{D}(S)$ into the language of tableaux. Given $S \subseteq[n]$, define $\pi_{D, S} \in \operatorname{Tab}(D)$ by

$$
\pi_{D, S}(r, c):= \begin{cases}r & \text { if }(r, c) \text { contributes a " } \star \text { " to } \text { word }_{c, S}(D), \tag{3.2}\\ s & \text { if }(r, c) \text { contributes a " }) \text { " to word } \\ c, S \\ & \text { paired with an " }(D \text { " from }(s, c) \\ \circ & \text { otherwise. }\end{cases}
$$

In (3.2) we pair by the standard "inside-out" convention.

Example 3.2. Continuing Example 3.1, below is $\pi_{D,\{1,3\}}(D)$.

Theorem 3.3. Let $D \subseteq[n]^{2}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ with $\alpha_{1}+\cdots+\alpha_{n}=\# D$. Then $\alpha \in \mathcal{S}_{D}$ if and only if for each $S \subseteq[n], \sum_{i \in S} \alpha_{i} \leq \# \pi_{D, S}^{-1}(S)$.

Define $\tau \in \operatorname{Tab}(D)$ to be flagged if $\tau(r, c) \leq r$ whenever $\tau(r, c) \neq 0$. It is columninjective if $\tau(r, c) \neq \tau\left(r^{\prime}, c\right)$ whenever $r \neq r^{\prime}$ and $\tau(r, c) \neq 0$.
Example 3.4. Of the tableaux of shape D below, only the second and fourth are flagged, and only the third and fourth are column-injective.

Further, call a tableau $\tau \in \operatorname{Tab}(D)$ perfect if τ is flagged, column-injective, and if no boxes are left unlabelled, i.e., $\tau^{-1}(\{0\})=\varnothing$. Say $\tau \in \operatorname{Tab}(D)$ has content α if $\# \tau^{-1}(\{i\})=$ α_{i} for each $i \in[n]$. Let $\operatorname{Perfect} \operatorname{Tab}(D, \alpha)$ denote the set of perfect tableaux of content α.

We use Theorem 3.3 to prove:
Theorem 3.5. Let $D \subseteq[n]^{2}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Then $\alpha \in \mathcal{S}_{D}$ if and only if $\operatorname{PerfectTab}(D, \alpha) \neq \varnothing$.

4 Polytopal descriptions of perfect tableaux

By Theorem 3.5, to decide $\alpha \in \mathcal{S}_{D}$, it suffices to determine PerfectTab $(D, \alpha) \neq \varnothing$. Thus it remains to analyze the complexity of deciding $\operatorname{Perfect} \operatorname{Tab}(D, \alpha) \neq \varnothing$.

For this, we construct a polytope that characterizes $\operatorname{Perfect} \operatorname{Tab}(D, \alpha)$. Given $D \subseteq[n]^{2}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, define

$$
\mathcal{P}(D, \alpha) \subseteq \mathbb{R}^{n^{2}}
$$

to be the polytope with points of the form $\left(\alpha_{i j}\right)_{i, j \in[n]}=\left(\alpha_{11}, \ldots, \alpha_{n 1}, \ldots, \alpha_{1 n}, \ldots, \alpha_{n n}\right)$ governed by the inequalities (A)-(C) below.
(A) Column-Injectivity Conditions: For all $i, j \in[n]$,

$$
0 \leq \alpha_{i j} \leq 1
$$

(B) Content Conditions: For all $i \in[n]$,

$$
\sum_{j=1}^{n} \alpha_{i j}=\alpha_{i} .
$$

(C) Flag Conditions: For all $s, j \in[n]$,

$$
\sum_{i=1}^{s} \alpha_{i j} \geq \#\{(i, j) \in D: i \leq s\}
$$

Theorem 4.1. Let $D \subseteq[n]^{2}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{>0}^{n}$. Then $\operatorname{Perfect} \operatorname{Tab}(D, \alpha) \neq \varnothing$ if and only if $\alpha_{1}+\cdots+\alpha_{n}=\# D$ and $\mathcal{P}(D, \alpha) \cap \mathbb{Z}^{n^{2}} \neq \varnothing$.

Theorem 4.1 formulates the problem of determining if $\operatorname{Perfect} \operatorname{Tab}(D, \alpha) \neq \varnothing$ in terms of feasibility of an integer linear programming problem. In general, integral feasibility is NP-complete. However, $\mathcal{P}(D, \alpha)$ is totally unimodular. Thus feasibility of the problem is equivalent to feasibility of its LP-relaxation:

Theorem 4.2. Let $D \subseteq[n]^{2}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ with $\alpha_{1}+\cdots+\alpha_{n}=\# D$. Then $\mathcal{P}(D, \alpha) \cap \mathbb{Z}^{n^{2}} \neq \varnothing$ if and only if $\mathcal{P}(D, \alpha) \neq \varnothing$.

By combining Theorems 3.5, 4.1, and 4.2 with the fact that $\mathcal{P}(D, \alpha)$ has a polynomial size halfspace description, it follows that $\alpha \in \mathcal{S}_{D}$ can be decided in $n^{O(1)}$-time. However, this result can be improved. If $D \subseteq[n]^{2}$ has many identical columns, then many of the flag conditions (C) will look essentially the same. Therefore, our final goal will be to construct a "compressed" version of $\mathcal{P}(D, \alpha)$ that removes some of the repetitive inequalities.

A tuple $\mathcal{C}=\left(m,\left\{P_{k}\right\}_{k=1}^{\ell}\right)$ is a compression of $D \subseteq[n]^{2}$ if:

- $m \leq n$ is a nonnegative integer such that $(r, p) \notin D$ for $r>m$ and $p \in[n]$, and
- $P=P_{1} \dot{\cup} \cdots \dot{\cup} P_{\ell} \subseteq[n]$ such that if $p, p^{\prime} \in P_{k}$ then

$$
\{r \in[n]:(r, p) \in D\}=\left\{r \in[n]:\left(r, p^{\prime}\right) \in D\right\}
$$

and moreover if D is nonempty in column p then $p \in P_{k}$ for some $k \in[\ell]$.
For a compression \mathcal{C} of $D \subseteq[n]^{2}$ and $\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ define

$$
\begin{equation*}
\mathcal{Q}(D, \mathcal{C}, \tilde{\alpha}) \subseteq \mathbb{R}^{m \ell} \tag{4.1}
\end{equation*}
$$

to be the polytope with points of the form $\left(\tilde{\alpha}_{i k}\right)_{i \in[m], k \in[\ell]}$ satisfying $\left(\mathrm{A}^{\prime}\right)-\left(\mathrm{C}^{\prime}\right)$ below.
(A^{\prime}) Column-Injectivity Conditions: For all $i \in[m], k \in[\ell]$,

$$
0 \leq \tilde{\alpha}_{i k} \leq 1
$$

(B') Content Conditions: For all $i \in[m]$,

$$
\sum_{k=1}^{\ell} \# P_{k} \cdot \tilde{\alpha}_{i k}=\alpha_{i}
$$

(C') Flag Conditions: For all $s \in[m], k \in[\ell]$,

$$
\sum_{i=1}^{s} \tilde{\alpha}_{i k} \geq \#\left\{\left(i, p_{k}\right) \in D: i \leq s, p_{k}:=\min P_{k}\right\}
$$

Theorem 4.3. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{m}\right):=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. Then $\alpha_{1}+\cdots+\alpha_{n}=\# D$ and $\mathcal{P}(D, \alpha) \neq \varnothing$ if and only if $\alpha_{1}+\cdots+\alpha_{m}=\# D, \alpha_{m+1}=\cdots=\alpha_{n}=$ 0 , and $\mathcal{Q}(D, \mathcal{C}, \tilde{\alpha}) \neq \varnothing$.

4.1 Deciding membership in the Schubitope

We use the above results to give a polynomial time algorithm to check if a lattice point is in the Schubitope. This more general result gives a polynomial time algorithm for any polynomial family whose Newton polytopes are Schubitopes. Let $D \subseteq[n]^{2}$, and fix a compression $\mathcal{C}=\left(m,\left\{P_{k}\right\}_{k=1}^{\ell}\right)$ of D.

Theorem 4.4. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. Then $\alpha \in \mathcal{S}_{D}$ if and only if $\alpha_{1}+\cdots+\alpha_{m}=\# D$, $\alpha_{m+1}=\cdots=\alpha_{n}=0$, and $\mathcal{Q}(D, \mathcal{C}, \tilde{\alpha}) \neq \varnothing$, where $\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{m}\right):=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.

For each $k \in[\ell]$, let $p_{k}:=\min P_{k}$ and $R_{k}(\mathcal{C}):=\left\{r \in[n]:\left(r, p_{k}\right) \in D\right\} \subseteq[m]$.
Theorem 4.5. Given as input $\left\{R_{k}(\mathcal{C})\right\}_{k=1}^{\ell},\left\{\# P_{k}\right\}_{k=1}^{\ell}$, and $\tilde{\alpha}=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ satisfying $\tilde{\alpha}_{1}+\cdots+\tilde{\alpha}_{m}=\# D$, one can decide if $\alpha:=\left(\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{m}, 0, \ldots, 0\right) \in \mathbb{Z}_{\geq 0}^{n}$ lies in \mathcal{S}_{D} in polynomial time in m and ℓ.

5 Application to $D(w)$: proof of Theorems 2.1 and 2.2

For the specialization to Rothe diagrams $D:=D(w)$, the results of A. Fink-K. MészárosA. St. Dizier [8] imply

$$
\alpha \in \mathcal{S}_{D(w)} \Longleftrightarrow c_{\alpha, w}>0
$$

Combining this with Theorem 3.5,

$$
c_{\alpha, w}>0 \Longleftrightarrow \operatorname{PerfectTab}(D(w), \alpha) \neq \varnothing
$$

Further, if $\operatorname{Perfect} \operatorname{Tab}(D(w), \alpha) \neq \varnothing$, we can find $\tau \in \operatorname{Perfect} \operatorname{Tab}(D(w), \alpha)$ which is also
 follows.

To obtain Theorem 2.1 we apply the results of Section 4 to $D(w)$. Suppose code $(w)=$ $\left(c_{1}, \ldots, c_{L}\right)$. Let $\sigma \in S_{L}$ be such that

$$
w(\sigma(1))<w(\sigma(2))<\ldots<w(\sigma(L))
$$

Set $w(\sigma(0)):=0$. The key lemma we need is:
Lemma 5.1. For $1 \leq h \leq L$, and for all

$$
j_{1}, j_{2} \in\{w(\sigma(h-1))+1, w(\sigma(h-1))+2, \ldots, w(\sigma(h))-1\}
$$

we have $\left(i, j_{1}\right) \in D(w)$ if and only if $\left(i, j_{2}\right) \in D(w)$.
Using Lemma 5.1, there exists a compression $\mathcal{C}=\left(L,\left\{P_{k}\right\}_{k=1}^{\ell}\right)$ of $D(w)$ where $\ell \leq 2 L$. With the following statement, Theorem 4.5 proves Theorem 2.1.

Proposition 5.2. There exists an $O\left(L^{2}\right)$-time algorithm to compute $\mathcal{C},\left\{\# P_{k}\right\}_{k=1}^{\ell}$, and $\left\{R_{k}\right\}_{k=1}^{\ell}$ from the input $\operatorname{code}(w)=\left(c_{1}, \ldots, c_{L}\right)$.

Acknowledgements

We acknowledge Mathoverflow, S. Kintali's blog "My brain is open," and R. O'Donnell's Youtube videos (from his class at Carnegie Mellon) for background. We thank Philipp Hieronymi, Alexandr Kostochka, Cara Monical, Erik Walsberg, Douglas West, Alexander Woo, and the anonymous referees for their helpful comments.

References

[1] A. Adve, C. Robichaux, and A. Yong. "An efficient algorithm for deciding vanishing of Schubert polynomial coefficients". In: Adv. Math., to appear (2021).
[2] A. Adve, C. Robichaux, and A. Yong. Complexity, combinatorial positivity, and Newton polytopes. 2018. arXiv: 1810.10361.
[3] M. Agrawal, N. Kayal, and N. Saxena. "PRIMES is in P". In: Ann. of Math. 160.2 (2004), pp. 781-793.
[4] D. Aharonov and O. Regev. "Lattice problems in NP \cap coNP". In: J. ACM 52.5 (2005), pp. 749-765.
[5] S. Billey, W. Jockusch, and R. P. Stanley. "Some combinatorial properties of Schubert polynomials". In: J. Algebraic Combin. 2.4 (1993), pp. 345-374.
[6] A. Condon. "The Complexity of Stochastic Games". In: Inf. Comput. 96.2 (1992), pp. 203-224.
[7] G. B. Dantzig. "Reminiscences about the origins of linear programming". In: Technical report of the Systems Optimization Laboratory (Stanford U.) 81.5 (1981).
[8] A. Fink, K. Mészáros, and A. St. Dizier. "Schubert polynomials as integer point transforms of generalized permutahedra". In: Adv. Math. 332 (2018), pp. 465-475.
[9] S. Fomin et al. "Balanced labellings and Schubert polynomials". In: European J. Combin. 18.4 (1997), pp. 373-389.
[10] W. Fulton. Young tableaux. With applications to representation theory and geometry. Vol. 35. London Mathematical Society Student Texts. Cambridge University Press, 1997.
[11] K. Gödel. "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I." In: Monatshefte für Mathematik und Physik 38 (1931), pp. 173198.
[12] O. Goldreich. P, NP, and NP-completeness: The Basics of Computational Complexity. Cambridge University Press, 2010.
[13] I. Holyer. "The NP-completeness of some edge-partition problems". In: SIAM J. Comput. 10.4 (1981), pp. 713-717.
[14] M. Jurdziński. "Deciding the winner in parity games is in UP \cap co-UP". In: Information Processing Letters, Elsevier 68.3 (1998), pp. 119-124.
[15] A. Lascoux and M. P. Schützenberger. "Polynômes de Schubert". In: C. R. Acad. Sci. Paris Sér. I Math. 294.447-450 (1982).
[16] C. Monical. "Polynomials in algebraic combinatorics". PhD thesis. University of Illinois at Urbana-Champaign, 2018.
[17] C. Monical, N. Tokcan, and A. Yong. "Newton Polytopes in Algebraic Combinatorics". In: Selecta Mathematica 25.66 (2019).
[18] V. Pratt. "Every Prime Has a Succinct Certificate". In: SIAM J. Comput. 4 (1975), pp. 214-220.
[19] A. Schrijver. Theory of Linear and Integer Programming. John Wiley \& Sons, 1986.
[20] R. P. Stanley. "A symmetric function generalization of the chromatic polynomial of a graph". In: Adv. Math. 111.1 (1995), pp. 166-194.
[21] A. Turing. "On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction." In: Proc. London Math. Soc. 43 (1937), pp. 544-546.

[^0]: *aadve@g.ucla.edu.
 \dagger cer2@illinois.edu. Colleen Robichaux was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1746047.
 \ddagger ayong@illinois.edu. Alexander Yong was supported by an NSF grant, a Simons Collaboration grant and a UIUC Campus Research Board grant.

[^1]: ${ }^{1}$ In this circumstance, the (complexity) polynomial hierarchy unexpectedly collapses to the first level.

